English

LATEST ISSUE

The Space Engineering and Technology Journal
 4 (31), 2020

Contents

05.07.02 FLYING VEHICLES ENGINEERING, DESIGN AND MANUFACTURING

Kirilin A.N., Akhmetov R.N., Baklanov A.I., Stratilatov N.R., AbrashkinV.I., Kosmodemyansky E.V., Tkachenko S.I., Salmin V.V., Tkachenko I.S., Safronov S.L.
MAIN DESIGN CHARACTERISTICS OF SMALL SCIENTIFIC AND APPLIED-PURPOSE SPACECRAFT BASED ON THE AIST-2 UNIFIED PLATFORM

The description of the unified platform of small spacecraft AIST-2 is presented. The platform is intended to accommodate various types of science equipment, Earth remote sensing equipment and onboard support systems. The description of the unified platform design, main onboard systems, ground control facilities, data acquisition and processing is given. The results of design studies, construction and operation of small spacecraft built on the basis of the AIST-2 unified platform are presented. The design, onboard composition, technical characteristics and results of operation of the first small spacecraft in the line AIST-2D which it was launched on April 28, 2016 in the scope of the first launch campaign from the Vostochny Cosmodrome by the Soyuz-2.1a launch vehicle with the Volga ascent unit are described in detail. The results of design studies on the development of advanced small spacecraft based on the AIST-2 platform capable of functioning as part of the space monitoring system are described.

Key words: small spacecraft, unified platform, design configuration, remote sensing of the Earth, stereoscopic image equipment, electro-rocket propulsion system.

Reference

1. Steimlea C., Gaucheb J.-F., Ernstc H., Tourneurd C. Airbus new payload hosting and end-to-end mission concepts. 68th International Astronautical Congress: Unlocking Imagination, Fostering Innovation and Strengthening Security, 2017, vol. 15, pp. 96899694.
2. GOST 4784-97. Alyuminii i splavy alyuminievye deformiruemye. Marki [Aluminium and wrought aluminium alloys. Grades]. Moscow, Standartinform publ., 2009. 31 p.
3. Kirilin A.N., Akhmetov R.N., Shakhmatov E.V., Tkachenko S.I., Baklanov A.I., Salmin V.V., Semkin N.D., Tkachenko I.S., Goryachkin O.V. Opytno-tekhnologicheskii malyi kosmicheskii apparat AIST-2D [Experimental technological small spacecraft AIST-2D]. Samara: SamNTs RAS publ., 2017. 324 p.
4. Avanesov G.A., Bessonov R.V., Forsh A.A., Kudelin M.I. Analiz sovremennogo sostoyaniya i perspektiv razvitiya priborov zvezdnoi orientatsii semeistva BOKZ [Analysis of the current state and development prospects of stellar orientation devices of the BOKZ family]. Izvestiya vuzov. Priborostroenie, 2015, vol. 58, no. 1, pp. 313.
5. Gerasimenko V.V., Andrievskii K.M., Belaya S.V., Gaponov A.D., Golovyashkin S.V., Novikov V.F., Sklyarov S.N., Trifonov S.I. Optiko-elektronnaya apparatura Avrora dlya MKA AIST-2D [Optoelectronic equipment Aurora for the small spacecraft AIST-2D]. Sistemy nablyudeniya, monitoringa i distantsionnogo zondirovaniya Zemli: materialy XIII Nauchno-tekhnicheskoi konferentsii. Moscow, 2016. Pp. 7787.
6. Baklanov A.I., Klyushnikov M.V., Grin'ko A.P. etc. KOETsA kompleks optiko-elektronnoi tselevoi apparatury dlya MKA AIST-2D [COECA - a complex of optoelectronic target equipment for small spacecraft AIST-2D]. Sbornik materialov konferentsii Aktual'nye problemy raketno-kosmicheskoi tekhniki. Samara: SamNTs RAS publ., 2015. Pp. 948.
7. Poplevin A.S., Panov N.A. Postroenie skhemy poleta bloka vyvedeniya Volga pri gruppovom vyvedenii kosmicheskikh apparatov v ploskost' orbity s trebuemoi uglovoi dal'nost'yu mezhdu apparatami [Construction of a flight diagram of the Volga launch unit during the group launch of spacecraft into the orbit plane with the required angular range between the spacecraft]. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie, 2017, vol. 16, no. 3, pp. 104113.
8. Goryachkin O.V., Maslov I.V., Zhengurov B.G. Proektnyi oblik malogo kosmicheskogo apparata s bistaticheskim radiolokatsionnym kompleksom P-VHF diapazonov vysokogo razresheniya [Conceptual design of small spacecraft with a high resolution P-VHF band bistatic sar system]. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie, 2017, vol. 16, no. 4, pp. 3140.
9. Nadiradze A.B., Kalaev M.P., Semkin N.D. Vozdeistvie meteoroidov i tekhnogennykh chastits na solnechnye batarei kosmicheskikh apparatov [The impact of meteoroids and man-made particles on solar panels of spacecraft]. Kosmicheskie issledovaniya, 2016, vol. 54, no. 5, pp. 392401.
10. Novomeiskii D.N., Telegin A.M., Semkin N.D. Fizicheskie effekty v datchikakh vysokoskorostnykh mikrochastits [Physical effects in sensors of high-speed microparticles]. Datchiki i sistemy, 2018, no. 1, pp. 3135.
11. Abrashkin V.I., Voronov K.E., Piyakov A.V., Dorofeev A.S., Puzin Yu.Ya., Sazonov V.V., Semkin N.D., Filippov A.S., Chebukov S.Yu. Opredelenie vrashchatel'nogo dvizheniya malogo kosmicheskogo apparata AIST-2D po dannym nauchnoi apparatury KMU-1 [Determination of the rotational motion of the small spacecraft AIST-2D according to the data of the scientific equipment of the CMU-1]. Preprinty IPM im. M.V. Keldysha, 2017, no. 57, pp. 137.
12. Baklanov A.I. Novye gorizonty kosmicheskikh sistem optiko-elektronnogo nablyudeniya Zemli vysokogo razresheniya [New horizons of space systems of optical-electronic observation of high resolution Earth]. Raketno-kosmicheskoe priborostroenie i informatsionnye sistemy, 2018, part I, vol. 5, issue 3, pp. 1728; part II, vol. 5, issue 4, pp. 1427.
13. OKB Fakel: poluvekovoi opyt razrabotki letnykh elektroreaktivnykh dvigatelei dlya kosmicheskikh apparatov [OKB Fakel: half a century of experience in the development of electric jet engines for spacecraft]. Aerokosmicheskoe obozrenie, 2019, no. 5, pp. 1418. Available at: https://fakel-russia.com/index.php/ru/66-okb-fakel-poluvekovoj-opyt-razrabotki-letnykh-elektroreaktivnykh-dvigatelej-dlya-kosmicheskikh-apparatov (accessed 24.08.2019).

 

Andreychuk P.O., Arakcheev D.V., Bobe L.S., Zheleznyakov A.G., Kochetkov A.A., Romanov S.Ju., Salnikov N.A.
USE OF ROTARY VACUUM DISTILLATION FOR WATER RECOVERY FROM URINE AND HYGIENE WATER ABOARD THE SPACE STATION

Due to planning of the Moon and deep space exploration programs, the crew sanitary hygiene support with a closed loop of hygiene water assumes great importance. Currently, Russia and the USA are investigating the hygiene water recovery process using reverse osmosis as the most energy efficient method. In the meantime, the urine water processor (SRV-U-RS) based on vacuum distillation method with thermal energy recovery has been developed in Russia and is being tested aboard the ISS. The processor energy consumption is comparable with the energy consumption in hygiene water recovery through reverse osmosis. Therefore, research and testing of a prototype integrated urine water and hygiene water processor as applied to the space station conditions have been arranged and conducted. The investigations demonstrated the recoverability of the hygiene water, including its mixture with urine by vacuum distillation in science hardware SRV-U-RS-type system. The results obtained ensure development of an integrated urine water and hygiene water processing system.

Key words: space station, life support system, water recovery, distillation, hygiene water, urine, energy recovery.

Reference

1. Bobe L.S., Kochetkov A.A., Romanov S.Yu., Andreichuk P.O., Zheleznyakov A.G., Sinyak Yu.E. Perspektivy razvitiya regeneratsionnogo vodoobespecheniya pilotiruemykh kosmicheskikh stantsii [Prospects for development of regeneration water supply for manned space stations]. Pilotiruemye polety v kosmos, 2014, no. 2(11), pp. 5160.
2. Sal'nikov N.A., Bobe L.S., Kochetkov A.A., Sinyak Yu.E. Regeneratsiya sanitarno-gigienicheskoi vody na perspektivnykh kosmicheskikh stantsiyakh [Recycling sanitary/hygienic water in future space stations]. Aviakosmicheskaya i ekologicheskaya meditsina, 2017, vol. 51, no. 5, pp. 4754.
3. GOST R 50804-95. Sreda obitaniya kosmonavta v pilotiruemom kosmicheskom korable. Obshchie mediko-tekhnicheskie trebovaniya [Cosmonauts habitable environments on board of manned spacecraft. General medicotechnical requirements]. Moscow, IPK Izdatel'stvo standartov publ., 1995. 118 p.
4. Andreychuk P., Romanov S., Zheleznyakov A., Bobe L., Kochetkov A., Tsygankov A., Arakcheev D., Sinyak Yu. Water supply of long-term space flights on the basis of physical-chemical processes for water regeneration. Papers of the 49th International Conference on Environmental Systems, 711 July 2019, Boston, Massachusetts. Available at: https://ttu-ir.tdl.org/handle/2346/84923 (accessed 26.08. 2020).
5. Andreychuk P., Romanov S., Zheleznyakov A., Bobe L., Kochetkov A., Tsygankov A., Arakcheev D., Sinyak Yu. The water management on the ISS and prospective space stations. Papers of the 50th International Conference on Environmental Systems, 31 July 2020. Available at: https://ttu-ir.tdl.org/handle/2346/86448 (accessed 26.08.2020).
6. Sal'nikov N.A., Bobe L.S., Kochetkov A.A., Zheleznyakov A.G., Andreichuk P.O., Shamshina N.A. Primenenie membrannoi apparatury dlya regeneratsii sanitarno-gigienicheskoi vody na kosmicheskoi stantsii [Use of membrane equipment for hygiene water processing aboard the space station]. Kosmicheskaya tekhnika i tekhnologii, 2018, no. 4(23), pp. 2939.
7. Bobe L.S., Sal'nikov N.A. Analiz i raschet protsessa nizkonapornogo obratnogo osmosa pri regeneratsii sanitarno-gigienicheskoi vody [Analysis and calculation of the process of low-pressure reverse osmosis during recycling of hygienic water]. Kosmicheskaya tekhnika i tekhnologii, 2019, no. 2(25), pp. 2835.
8. Arakcheev D.V., Bobe L.S., Kochetkov A.A., Sal'nikov N.A. Tekhnologiya regeneratsii sanitarno-gigienicheskoi vody [Sanitary/hygienic water recycling technology]. Aviakosmicheskaya i ekologicheskaya meditsina, 2018, vol. 52, no. 7s, pp. 1011.
9. Bobe L.S., Kochetkov A.A., Arakcheev D.V., Sal'nikov N.A., Andreichuk P.O. Regeneratsiya sanitarno-gigienicheskoi vody metodom vakuumnoi distillyatsii [Recycling sanitary/hygienic water using vacuum distillation technique]. Manned spaceflight. Collection of scientific papers from the 13th International research-to-practice conference, 1315 November 2019, Zvezdnyi gorodok. Pp. 6667.
10. Bobe L.S., Kochetkov A.A., Arakcheev D.V., Sal'nikov N.A., Andreichuk P.O. Kompleksnaya sistema regeneratsii vody iz uriny i sanitarno-gigienicheskoi vody dlya kosmicheskoi stantsii [Integrated system for recycling water from urine and sanitary/hygienic ware for a space station]. Collected papers of the 18th International conference Aviation and Space 2019, 1822 November 2019. Moscow, MAI publ., p. 129.

 

Milovanov V.A., Gordyaev A.S.
ASSURING FAULT TOLERANCE OF THE SOYUZ MS MANNED TRANSPORT SPACECRAFT

The paper is devoted to assuring a failure-free operation of the Soyuz MS manned transport spacecraft and the safety of its crew and also to making an analysis of the validity of fault tolerance requirements specified for the spacecraft in the scope of its participation in the International Space Station (ISS) activities. The analysis of methods and the results of work to assure resistance to failures of the Soyuz spacecraft in the development and the subsequent modernization phases are presented. The concept of requirements for fault tolerance adopted in the design and development of the Soyuz MS spacecraft is stated, modifications made onboard the spacecraft to fulfill these requirements are described. Objectives of the ground development test and the plant check-out tests to present failures in the flight of spacecraft are reviewed. An approach to statistical analysis of comments and failures detected during the flight of the spacecraft is proposed; it allows to give an independent assessment of the efficiency of tests to prevent failures in flight. The results of statistical analyses of comments and failures recorded in flights of the Soyuz spacecraft to the ISS (a total of 55 spacecraft) are presented. Based on the results a conclusion about the validity and sufficiency of requirements for fault tolerance is made.

Key words: manned transport spacecraft Soyuz, Soyuz MS, flight, modernization, modification, fault tolerance, reliability, safety, comment, failure, statistical analysis, International Space Station, ISS, design, development, ground development test, plant check-out tests.

Reference

1. Il'in A. Soyuz TMA stal sovremennym. Interv'yu s E.A. Mikrinym [Soyuz TMA became modern. Interview with E.A. Mikrin]. Novosti kosmonavtiki, 2010, no. 12, pp. 1417.
2. Krasil'nikov A. Novaya modifikatsiya Soyuza poletit cherez god [A new version of Soyuz will fly in a years time]. Novosti kosmonavtiki, 2015, no. 5, pp. 2931.
3. Krasil'nikov A. Modernizirovannyi korabl' [The upgraded spacecraft]. Novosti kosmonavtiki, 2016, no. 9, pp. 35. 4. Derechin A.G., Zharova L.N., Sinyavskii V.V., Solntsev V.L., Sorokin I.V. Mezhdunarodnoe sotrudnichestvo v sfere pilotiruemykh poletov. Chast' 2. Sozdanie i ekspluatatsiya Mezhdunarodnoi kosmicheskoi stantsii [International cooperation in the sphere of manned lights. Part 2. Development and operation of the International Space Station]. Kosmicheskaya tekhnika i tekhnologii, 2017, no. 2(17), pp. 528.
5. SSP 50146. NASA/RSA bilateral S&MA Process Requirements for International Space Station. Johnson Space Center. Houston, Texas. Revision B, March 2004. 179 p.
6. SSP 41163. Russian Segment Specification International Space Station Program. Johnson Space Center. Houston, Texas. Revision J, 28 November 2008. 435 p.
7. GOST 27.31095. Nadezhnost' v tekhnike. Analiz vidov, posledstvii i kritichnosti otkazov. Osnovnye polozheniya [Dependability in technics. Failure mode, effects and critically analysis. Basic principles]. Moscow, Gosstandart Rossii publ., 1995. 15 p.
8. SSP 30234. Failure modes and effects analysis and critical items list requirements for Space Station. International Space Station Program. National Aeronautics and Space Administration. International Space Station Program Johnson Space Center. Houston, Texas. Revision F, July 2002. 97 p.
9. Nadezhnost' i effektivnost' v tekhnike. Eksperimental'naya otrabotka i ispytaniya. Spravochnik [Reliability and effectiveness in technology. Experimental development and tests. Handbook]. Ed. by Avduevskiy V.S. Moscow, Mashinostroenie publ., 1989. Vol. 6, 376 p.
10. GOST 27.002-2015. Nadezhnost' v tekhnike. Terminy i opredeleniya [Dependability in technics. Terms and definitions]. Moscow, Standartinform publ., 2016. 23 p.

 

Rasskazov Ya.V., Chernyshev I.E., Kobets V.D.
EXTENSION VELOCTIY LIMITER FOR THE RING OF AN ELASTICALLY ADAPTIVE PERIPHERAL DOCKING MECHANISM

The docking ring of an elastically adaptive docking mechanism on the initial contact signal is extended by spring-loaded mechanisms of the rods in order to improve capture conditions. In the process, it reaches a high velocity, which applies unacceptably high impact loads to the docking interface. This paper discusses an extension velocity limiter for the docking ring, its analytical model, and a brief procedure for calculating its parameters. It describes a simplified model for ring extension during initial contact, and a method for determining viscous friction coefficient of the ball-screw pair of the docking mechanism, which is a parameter in the model. It presents the procedure, results and comparison of simulations of the docking ring extension both with the use of the proposed retarder and without it. It is demonstrated that the use of the velocity limiter permits to meet the requirements of the International Standard for pulsed loads on the passive interface. The paper describes a design option for velocity limiter that has acceptable mass and dimensions.

Key words: spacecraft docking, elastically adaptive docking mechanism, retraction device, velocity limiter, mechanical governor.

Reference

1. Syromyatnikov V.S. Stykovochnye ustroistva kosmicheskikh apparatov [Spacecraft docking assemblies]. Moscow, Mashinostroenie publ., 1984. 216 p.
2. International Docking System Standard (IDSS) Interface Definition Document (IDD). Available at: http://internationaldockingstandard.com (accessed 10.08.2020).
3. Patent RU 2657623. Periferiinyi stykovochnyi mekhanizm [Peripheral docking mechanism]. Yaskevich A.V., Pavlov V.N., Chernyshev I.E., Rasskazov Ya.V., Zemtsov G.A., Karpenko A.A.; the patent owner PAO RKK Energiya; application 2017119305 of 01.07.2017; published 14.06.2018.
4. Rasskazov Ya.V. Dvukhsatellitnyi tsikloidnyi reduktor Davida v ustroistve styagivaniya periferiinogo stykovochnogo mekhanizma [David's two-satellite cycloid reducer in a retraction device for peripheral docking mechanism]. Privody i komponenty mashin, 2019, no. 34, pp. 1014.
5. Chernyshev I.E. Kombinirovannaya model' 6-stepennoi platformy GoughStewart dlya proektirovaniya perspektivnogo stykovochnogo mekhanizma [Combined model of 6-DoF Gough-Stewart platform for designing advanced docking mechanism]. Dissertation studies results. Vol. 4. Materials of the 4th All-Russia Young Scientists Competition. Moscow, RAS publ., 2012. 129 p.
6. Misyurin S.Yu., Ivlev V.I., Kosarev A.A., Kostin A.V. Opredelenie granits mertvykh polozhenii v mekhanizmakh s odnoi i neskol'kim stepenyami svobody [Determining the boundaries of dead-center positions in mechanisms with one and multiple degrees of freedom]. Problemy mashinostroeniya i avtomatizatsii, 2008, no. 3, pp. 5055.
7. Yaskevich A.V., Chernyshev I.E. Vybor parametrov nakopitelya energii dlya novogo periferiinogo stykovochnogo mekhanizma [Choice of energy accumulator parameters for a new peripheral docking mechanism]. Kosmicheskaya tekhnika i tekhnologii, 2019, no. 2(25), pp. 5566.
8. Yaskevich A.V. Osobennosti dinamiki stykovki kosmicheskikh apparatov pri ispol'zovanii periferiinogo mekhanizma s nakopleniem kineticheskoi energii sblizheniya [Spacecraft docking dynamic features by using a peripheral mechanism with accumulation of approach kinetic energy]. Kosmicheskaya tekhnika i tekhnologii, 2019, no. 4(27), pp. 109120.
9. Chernavskii S.A. Proektirovanie mekhanicheskikh peredach [Mechanical transmission design]. Moscow, Mashinostroenie publ., 1976. 597 p.
10. Krainev A.F. Slovar'-spravochnik po mekhanizmam [Dictionary-handbook on mechanisms]. Moscow, Mashinostroenie publ., 1987. 560 p.
11. Targ S.M. Kratkii kurs teoreticheskoi mekhaniki. 20-e izd. [A short course in theoretical mechanics. 20th edition]. Moscow, Vysshaya shkola publ., 2010. 416 p.

 

05.07.03 FLYING VEHICLES STRENGTH AND THERMAL ENVIRONMENTS

Sofinsky A.N.
STRAIN-STRESS BEHAVIOUR OF ELASTIC LAYER IN LOCAL LOADING

The paper studies the problem of a local loading of an elastic layer in 3D perspective. The solution of the boundary value problem subject to a concentrated force is constructed as a combination of two components. The first component is a classical solution of A. Lyav theory of elasticity, the second one is a solution proposed by I.. Rapoport. The second component is distinctive in that it describes a point edge effect rapidly damping while moving off from the point of force application. This solution is built in a series form, namely, proper decompositions of the auxiliary nonself-adjoint differential operator. The convergence of series is ensured by a rapid growth of eigenvalues. Dying-away to zero at infinity is caused by the exponential law of Macdonald functions damping. The solution of the concentrated force action is used as a kernel to determine displacement vector components, tensors of deformations and strains in the problem of arbitrary local loading of an elastic layer. Eventually, analytical solution of the singular problem makes it possible to reasonably determine the strain-stress state in a local loading zone.

Key words: strength, stress-strain behavior, theory of elasticity, differential equations, series, Bessel functions.

Reference

1. Sofinsky A.N. An effect of deformation of a structure on its load carrying capacity. // Space Engineering And Technology. 2016. 2(13). p.34-44.
2. Bezmozgy I.M., Sofinski A.N., Chernyagin A.G. Mode of deformation and strength of welded shell with tunnel pipe // Space Engineering And Technology. 2016. 3(14). p.43-55.
3. Sofinsky A.N. Engineering procedure for evaluating the load-bearing capacity and life of a defective structure. // Space Engineering And Technology. 2020. 2(29). p.
4. Landau L.D., Lifshits E.M. Theoretical Physics in 10 volumes. Vol. VII The Theory of Elasticity. Moscow. Fizmatlit, 2003, 264 p.
5. Rapoport I.M. Three-dimensional problem in the theory of elasticity for an area between two parallel planes. Proc. of USSR Academy of Sciences, 1970, vol.191, No.4, p.787-790.
6. E. Kamke. Handbook of ordinary differential equations.

 

05.07.05 FLYING VEHICLES THERMAL, ELECTRIC PROPULSION ENGINES AND POWER GENERATING SYSTEMS

Sinyavskiy V.V.
A REVIEW OF HIGH-POWER MAGNETOPLASMODYNAMIC ELECTRIC PROPULSION DESIGNS AND STUDIES OF RSC ENERGIA

At the initiative of S.P. Korolev, in 1959, Special Design Bureau No.1 (now RSC Energia) established the High-temperature Power Engineering and Electric Propulsion Center which was tasked with development of nuclear electric propulsion for heavy interplanetary vehicles. Selected as the source of electric power was a nuclear power unit based on a thermionic converter reactor, and selected as the engine was a stationary low-voltage magnetoplasmodynamic (MPD) high-power (0.51.0 MW) thruster which had thousands of hours of service life. The paper presents the results of extensive efforts in research, development, design, materials science experiments, and tests on the MPD-thruster, including the results of development and 500-hours life tests of an MPD-thruster with a 500-600 kW electric power input that used lithium propellant. The worlds first lithium 17 kW MPD-thruster was built and successfully tested in space. The paper points out that to this day nobody has surpassed the then achievements of RSC Energia neither in thruster output during long steady-state operation, nor in performance and service life.

Key words: Martian expeditionary vehicle, nuclear electric rocket propulsion system, electric rocket thruster, magnetoplasmodynamic thruster, lithium, cathode, anode, barium, electric propulsion tests in space.

Reference

1. Bezyaev I.V., Stoyko S.F. Obzor proektov pilotiruemykh poletov k Marsu [A review of projects for manned missions to Mars]. Kosmicheskaya tekhnika i tekhnologii, 2018, no. 3(22), pp. 1731.
2. Gorshkov L.A., Sinyavskiy V.V., Stoiko S.F. Mezhplanetnye proekty S.P. Koroleva i ikh razvitie v RKK Energiya [Interplanetary projects of S.P. Korolev and their development at RSC Energia]. In: S.P. Korolev. Encyclopedia of his life and work. Korolev: RKK Energiya publ., 2014. Pp. 240259.
3. S.P. Korolev. Entsiklopediya zhizni i tvorchestva [S.P. Korolev. Encyclopedia of his life and work]. Korolev: RKK Energiya publ., 2014. 704 p.
4. Sinyavskiy V.V. Yadernye elektroraketnye dvigatel'nye ustanovki v proektakh pilotiruemykh poletov k Marsu [Nuclear-powered electrical propulsion systems in projects for manned missions to Mars]. Abstracts of XLII academic readings on cosmonautics. Moscow, MGTU im. N.E. Baumana publ., 2018. Pp. 1617.
5. Ostrovskiy V.G., Sukhov Yu.I. Razrabotka, sozdanie i ekspluatatsiya elektroraketnykh dvigatelei v OKB-1 TsKBEM NPO Energiya RKK Energiya (1958 2010) [Development and operation of electric propulsion thrusters and electric propulsion systems at OKB-1TsKBEMNPO EnergiaRSC Energia (19582010)]. Raketno-kosmicheskaya tekhnika. Trudy. Ser. XII. Korolev: RKK Energiya publ., 2011. 188 p.
6. Sinyavskiy V.V. K 100-letiyu so dnya rozhdeniya M.V. Mel'nikova soratnika S.P. Koroleva i rukovoditelya kompleksa vysokotemperaturnoi kosmicheskoi yadernoi energetiki i elektroraketnykh dvigatelei [On the occasion of centenary of the birth of M.V. Melnikov an associate of S.P. Korolev and the head of the unit for high-temperature space nuclear power engineering and electric propulsion]. Abstracts of XLIV Academic Readings on Cosmonautics. Moscow, MGTU im. N.E. Baumana publ., 2020.
7. Khudyakov A., Khudyakov S. Genii artillerii [A genius of artillery]. Moscow, ID Zvonnitsa-MG publ., 2007. Pp. 522551.
8. K istorii sozdaniya i ekspluatatsii issledovatel'skogo reaktora na bystrykh neitronakh BR-5 (BR-10). 1959-2009 gg.: stat'i, vospominaniya, fotodokumenty [Towards a history of development and operation of the fast neutron research reactor BR-5 (BR-10). 1959 2009: articles, reminiscences, photographic documents]. State Corporation Rosatom, GNTs RF FEI im. A.I. Leipunskogo. Obninsk: GNTs RFFEI publ., 2009. Pp. 134138.
9. Gudilin V.E., Sinyavskiy V.V. Kosmicheskii apparat radiolokatsionnoi morskoi razvedki US-A s YaEU Buk v kachestve istochnika elektroenergii [Maritime radar surveillance spacecraft US-A with the nuclear power system Buk as its source of electric power]. In: S.P. Korolev. Entsiklopediya zhizni i tvorchestva. Korolev: RKK Energiya publ., 2014. Pp. 135138.
10. Zemlyanov A.B., Kosov G.L., Traube V.A. Sistema morskoi kosmicheskoi razvedki i tseleukazaniya (Istoriya sozdaniya) [Maritime space surveillance and targeting system (development history)]. SPb.: Galeya Print publ., 2002. 216 p.
11. Sukhov Yu.I., Sinyavskiy V.V. Obzor rabot RKK Energiya imeni S.P. Koroleva po termoemissionnym yadernym energeticheskim ustanovkam bol'shoi moshchnosti kosmicheskogo naznacheniya [Review of work done at S.P. Korolev RSC Energia on high-power thermionic nuclear power generation systems for space applications]. Raketno-kosmicheskaya tekhnika. Trudy. Ser. XII. Korolev: RKK Energiya publ., 1995, issue 34, pp. 1328.
12. Sinyavskiy V.V. Yadernye elektroraketnye dvigateli dlya poleta na Mars [Nuclear-powered electrical propulsion engines for missions to Mars]. Zemlya i Vselennaya, 2017, no. 5, pp. 2843.
13. Raketno-kosmicheskaya korporatsiya Energiya im. S.P. Koroleva. 19461996 [S.P. Korolev Rocket and Space Corporation Energia. 19461996]. Moscow, RKK Energiya publ., 1996. 670 p.
14. Gusev Yu.G., Pil'nikov A.V., Suvorov S.E. Sravnitel'nyi analiz vybora ERDU bol'shoi moshchnosti na osnove otechestvennykh ERD i perspektivy ikh primeneniya v sistemakh mezhorbital'noi transportirovki i dlya issledovaniya dal'nego kosmosa [Tradeoff analysis of high-power electric propulsion systems based on domestic electric propulsion engines and potential for their use in orbit-to-orbit transfer systems and deep space exploration]. Kosmicheskaya tekhnika i tekhnologii, 2019, no. 4(27), pp. 4555.
15. Zakharenkov L.E., Semenkin A.V., Solodukhin A.E. Eksperimental'noe issledovanie mnogodvigatel'noi sistemy na baze neskol'kikh odnovremenno rabotayushchikh elektroraketnykh dvigatelei s anodnym sloem [Experimental study of multi-thruster system based on several simultaneously operating electric propulsion thrusters with anode layer]. Kosmicheskaya tekhnika i tekhnologii, 2016, no. 1(12), pp. 3956.
16. Ostrovskiy V.G., Sinyavskiy V.V., Sukhov Yu.I. Mezhorbital'nyi elktroraketnyi buksir Gerkules na osnove termoemissionnoi yaderno-energeticheskoi ustanovki [Electrically-propelled orbital transfer vehicle Hercules based on a thermionic nuclear power system]. Kosmonavtika i raketostroenie, 2016, no. 2(87), pp. 6874.
17. Sinyavskiy V.V., Yuditskiy V.D. Odnorazovye yadernye elektroraketnye buksiry dlya dostavki na orbitu Marsa nedelimykh gruzov bol'shoi massy [Expendable nuclear power generation and propulsion tugs for delivery to the Martian orbit of indivisible large-mass cargos]. Izvestiya RAN. Energetika, 2012, no. 2, pp. 7581.
18. Ageev V.P., Ostrovskii V.G. Magnitoplazmodinamicheskii dvigatel' bol'shoi moshchnosti nepreryvnogo deistviya na litii [Continuous-action high-power lithium magnetoplasmadynamic engine]. Izvestiya RAN. Energetika, 2007, no. 3, pp. 8295.
19. Entsiklopediya nizkotemperaturnoi plazmy [Encyclopedia of low-temperature plasma]. Ed. by V.E. Fortov. Moscow, Nauka publ., 2000, vol. IV, 319 p.
20. Ostrovskiy V.G. Sozdanie i issledovanie termoemissionnogo katoda dlya elektroraketnykh dvigatelei s resursom v neskol'ko tysyach chasov [Development and study of a thermionic cathode for electric thrusters with service life of several thousand hours]. Diss. kand. tekh. nauk. Kaliningrad, NPO Energiya, 1973.
21. Philip C.M. A study of hollow cathode discharge characteristics. AIAA, 1971, vol. 9, no. 11, p. 21912196. 22. Dyuzhev G.A., Startsev E.A., Shkol'nik S.M., Yur'ev V.G. Nizkotemperaturnyi bezerozionnyi katod na bol'shie plotnosti toka [Low-temperature erosion-free cathode for high current densities]. ZhTF, 1978, vol. 48, issue 10, pp. 21132117.
23. Patent RU 2351800 S1. Russian Federation. Magnitoplazmodinamicheskii dvigatel' [Magnitoplasmadynamic thruster]. Ostrovskiy V.G.; the patent owner OAO RKK Energiya; application 2007129605/06 of 02.08.2007. Izobreteniya, 2009, no. 10.
24. Ageev V.P., Ostrovsky V.G., Petrosov V.A. High-current stationary plasma accelerator of high power. IEPC-93-117, pp. 10711075.
25. Andrenucci M. History of electric propulsion the golden age. 5th International spacecraft propulsion conference Space propulsion 2008, Heraklion, Crete, Greece. May 58 2008, pp. 40.
26. Kubarev Yu.V. Polety na Mars, elektroreaktivnye dvigateli nastoyashchego i budushchego [Missions to Mars, electrical propulsion of the present and the future]. Nauka i tekhnologii v promyshlennosti, 2006, no. 2, pp. 1935.
27. Pilotiruemaya ekspeditsiya na Mars [Manned mission to Mars]. Ed. by A.S. Koroteev. Moscow, Rossiiskaya akademiya kosmonavtiki im. K.E. Tsiolkovskogo publ., 2006. 320 p.
28. Gorshkov O.A., Shutov V.N., Kozubsky K.N., Ostrovsky V.G., Obukhov V.A. Development of high power magnetoplasmadynamic thrusters in the USSR. 30th IEPC-2007-136, 2007.
29. Maslennikov A.A., Sinyavskiy V.V., Yuditskiy V.D. O vozmozhnosti dobychi termoyadernogo topliva geliya-3 iz atmosfery Yupitera [On the feasibility of mining nuclear fuel helium-3 from Jovian atmosphere]. Izvestiya RAN. Energetika, 2006, no. 1, pp. 121124.

 

05.07.06 GROUND FACILITIES, LAUNCHING EQUIPMENT, OPERATION OF FLYING VEHICLES

Kirillov .S., Pyshko A.P., Romanenko A.A., Yarygin V.I.
THE REACTOR RESEARCH AND TEST FACILITY

The paper describes an overview of the history of development and the current state of JSC SSC RFIPPE reactor research and test facility designed for assembly, research and full-scale life energy tests of space nuclear power plants with a thermionic reactor. The leading specialists involved in development and operation of this facility are represented. The most significant technological interfaces and upgrade operations carried out in the recent years are discussed. The authors consider the use of an oil-free pumping system as part of this facility during degassing and life testing. Proposed are up-to-date engineering solutions for development of the automated special measurement system designed to record NPP performance, including volt-ampere characteristics together with thermophysical and nuclear physical parameters of a ground prototype of the space nuclear power plant.

Key words: reactor research and test facility, thermionic reactor, life energy tests, oil-free pumping system, automated special measurement system, volt-ampere characteristics.

Reference

1. Eksperimental'naya baza otrasli v Gosudarstvennom nauchnom tsentre Rossiiskoi Federatsii Fiziko-energeticheskom institute imeni A.I. Leipunskogo [Experimental facilities of the industry at the National Scientific Center of the Russian Federation Leipunky Institute for Physics and Power Engineering]. Obninsk: FGUP GNTs RFFEI publ., 2005. 88 p.
2. Romanov A.V. Teoriya kompleksnoi optimizatsii proektirovaniya kosmicheskikh apparatov s yadernymi termoemissionnymi energeticheskimi ustanovkami [Theory of comprehensive optimization for systems engineering of spacecraft powered by nuclear thermionic units]. SPb.: OOO NPO Professional publ., 2010. 472 p.
3. Andreev P.V., Gulevich A.V., Yarygin V.I. et al. Fiziko-tekhnicheskie vozmozhnosti termoemissii dlya sovremennykh proektov sozdaniya KYaEU megavattnogo klassa [Physical and engineering potentialities offered by thermal emission for advanced designs of megawatt space nuclear power systems]. Proceedings of the International Conference Nuclear and Emerging Technologies for Space (NETS 2012), USA, 2012. Paper 3014.
4. Yarygin V.I. Yadernaya energetika pryamogo preobrazovaniya v kosmicheskikh missiyakh XXI v. [Direct-conversion nuclear power in space missions of the XXIst century]. Izvestiya vuzov. Yadernaya energetika, 2013, issue 2, pp. 520. 5. Strategiya razvitiya kosmicheskoi yadernoi energetiki na period do 2030 goda [Development strategy for nuclear power-generation in space for the period until 2030]. MIC news dated 14.08.2019. Interfax-AVN. Available at: http://www.vpk.name/news/2019-08-14 (accessed 01.11.2019).
6. Andrianov D.I., Zakharenkov L.E., Karevskii A.V., Kiryushin E.N., Oshev Yu.A., Popov A.V., Popov S.A., Semenkin A.V., Solodukhin A.E., Terekhov D.N., Shtonda S.Yu. Osobennosti organizatsii nazemnoi eksperimental'noi otrabotki moshchnykh yadernykh energodvigatel'nykh ustanovok kosmicheskogo naznacheniya [Special aspects of organizing ground developmental tests of high-power nuclear power generation units for space applications]. Kosmicheskaya tekhnika i tekhnologii, 2018, no. 2(21), pp. 4153.
7. Pupko V.Ya. Istoriya rabot po letatel'nym apparatam na yadernoi energii dlya kosmicheskikh i aviatsionnykh ustanovok v GNTs RF FEI [A history of work on nuclear powered flying vehicles for space and airborne installations at the Institute for Physics and Power Engineering (NSC RF FEI)]. Obninsk: FEI publ., 2000. 56 p.
8. Gryaznov G.M. Kosmicheskaya atomnaya energetika i novye tekhnologii (Zapiski direktora) [Space nuclear power engineering and new technologies (Directors notes)]. Moscow, FGUP TsNIIatominform publ., 2007. 136 p.
9. Yarygin V.I., Ruzhnikov V.A., Sinyavskiy V.V. Kosmicheskie i nazemnye yadernye energeticheskie ustanovki pryamogo preobrazovaniya energii: Monografiya [Space- and ground-based direct power conversion nuclear power systems: Monograph]. Moscow, NIYaU MIFI publ., 2015. 364 p.
10. AO FTsNIVT SNPO Eleron. Available at: http://www.eleron.ru (accessed 01.11.2019).
11. Sinyavskiy V.V. Metody i sredstva eksperimental'nykh issledovanii i reaktornykh ispytanii termoemissionnykh sborok [Methods and means of experimental studies and reactor tests of thermionic assemblies]. Moscow, Energoatomizdat publ., 2000. 375 p.
12. Kirillov A.S., Yarygin V.I. Sovremennyi informatsionno-izmeritel'nyi kompleks dlya provedeniya issledovanii i ispytanii termoemissionnykh preobrazovatelei teplovoi energii v elektricheskuyu [Advanced data measurement system for studies and tests on thermionic converters of heat into electrical power]. Izvestiya vuzov. Yadernaya energetika, 2018, issue 2, pp. 137145.
13. Denisenko V.V. Komp'yuternoe upravlenie tekhnologicheskim protsessom, eksperimentom, oborudovaniem [Computerized control of the manufacturing processes, experiment, equipment]. Moscow, Goryachaya liniya Telekom publ., 2009. 608 p.
14. Kirillov A.S., Agafonov V.R. Intellektual'nye moduli vvoda signalov termopar s ob"ektov termoemissionnoi eksperimental'noi ustanovki [Smart modules for inputting thermocouple signals from experimental thermionic facilities]. Nauchno-tekhnicheskii vestnik Povolzh'ya, 2016, no. 3, pp. 6568.
15. NPF KontrAvt. Available at: http://www.kontravt.ru (accessed 01.11.2019).
16. Afonskii A.A. Elektronnye nagruzki Aktakom sredstvo povysheniya effektivnosti ispytanii istochnikov elektropitaniya [AKTAKOM electronic loads as the means of improving efficiency of tests on power supply sources]. Kontrol'no-izmeritel'nye pribory i sistemy, 2011, issue 1, pp. 1116.
17. Website of the AKTAKOM brand. Available at: http://www.aktakom.ru (accessed 01.11.2019).

 

05.07.07 CHECKING AND TESTING FLYING VEHICLES AND THEIR SYSTEMS

Belyaev B.I., Katkovsky L.V., Silyuk O.O., Litvinovich G.S., Martinov A.O., Lamaka A.A., Bruchkouskaya S.I.
PROCEDURES FOR IN-FLIGHT CALIBRATION OF SATELLITE SPECTRAL EQUIPMENT

The paper presents procedures developed for in-flight calibration of satellite spectral equipment (by solving direct and inverse problems in the theory of radiation transfer in the atmosphere) using quasi-synchronous sub-satellite point measurements. Also presented are the results of processing and analysis of several sessions of multi-level measurements conducted at the Zyabrovka test range (Republic of Belarus, Gomel region). Measurements taken from ground and air used spectral instrumentation developed at the Airspace Research department of Sevchenko IAPP of BSU to support satellite test ranges on the ground. Verification results are provided for measurements taken on the ground, in air and in space. Used for verification of the ground and space measurements were data from the multi-spectral spacecraft Sentinel-2.

Key words: in-flight calibrations, sub-satellite test range, spectral brightness coefficients, field measurements.

Reference

1. Martinov A.O., Katkovskii L.V., Stanchik V.V., Belyaev B.I. Issledovanie atmosfery s pomoshch'yu skaniruyushchego solnechnogo spektropolyarimetra [Atmospheric studies using a scanning solar spectropolarimeter]. Zhurnal Belorusskogo gosudarstvennogo universiteta. Fizika, 2018, no. 3, pp. 2030.
2. Dubovik O., King M. D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. Journal of Geophysical Research, 2000, vol. 105, issue D16, pp. 2067320696.
3. Stanchik V.V., Khomitsevich A.D. Fotospektroradiometr dlya polevykh izmerenii spektrov otrazheniya ob"ektov [Photospectroradiometer for field measurements of reflection spectra of objects]. Proceedings of the 4th International workshop Applied Problems in Optics, Information Science, Radio Physics, and Condensed Matter Physics. Minsk, 2017, pp. 145147.
4. Katkovskii L.V., Belyaev B.I., Sosenko V.A., Ablameiko S.V. Apparatno-programmnyi kompleks Kalibrovka dlya nazemnogo spektrometrirovaniya podstilayushchei poverkhnosti i atmosfery [Hardware and software system Kalibrovka for ground-based spectrometry of the underlying surface of the atmosphere]. Proceedings of the 7th Belarus Space Congress. Minsk, 2017, vol. 2, pp. 3640.
5. Katkovskii L.V., Martinov A.O., Krot Yu.A., Bruchkovskaya S.I., Lomako A.A., Silyuk O.O., Stanchik V.V., Khomitsevich A.D. Solnechnyi spektropolyarimetr SSP-600 [Solar spectropolarimeter SSP-600]. Proceedings of the 9th International Scientific and Technical Conference Instrumentation Technology 2016. Minsk, 2016, pp. 182183.
6. Sentinel-2 Mission. Available at: https://sentinel.esa.int/web/sentinel/missions/sentinel-2 (accessed 13.06.2019).
7. Katkovsky L.V. Parameterization of outgoing radiation for quick atmospheric correction of hyperspectral images. Atmospheric and Oceanic Optics, 2016, vol. 29, no. 9, pp. 778784.
8. Ginzburg A.S., Mel'nikova I.N., Samulenkov D.A., Sapunov M.V., Katkovskii L.V. Prostaya opticheskaya model' bezoblachnoi i oblachnoi atmosfery dlya rascheta potokov solnechnoi radiatsii [Simple optical model of cloudless and cloudy atmosphere for calculating solar radiation fluxes]. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2016, vol. 13, no. 2, pp. 132149.

 

Markov A.V., Konoshenko V.P., Churilo I.V.,Churilo O.V., Sokolov V.G., Gorbenko A.V., Buslov E.P., Ustinov I.V., Feldstein V.A., Skalkin A.S.
EXPERIMENTAL DEVELOPMENT ONBOARD THE ISS RUSSIAN SEGMENT OF THE PROTOTYPE SYSTEM FOR QUICK LOCALIZATION OF A PUNCTURE IN THE SPACE STATION PRESSURE SHELL

Improving safety of space station operations at the time when the near-Earth space is getting increasingly littered with space junk is one of the principal problems in space station design. Along with the measures to reduce the risk of the station pressure shell penetration resulting from a collision with a meteoroid or a piece of space debris that involve protection of the module pressure shells with shields, there is also a need for developing measures and equipment aimed at mitigating catastrophic consequences of the penetration. One of the key factors allowing successful recovery from an emergency situation caused by station depressurization in case of a puncture is the time needed to locate the puncture, which determines possible scenarios for crew actions during recovery operations and their result. The Immediate Puncture Localization System (IPLS) presented in this paper provides reliable and virtually immediate detection of the time and location of the penetration. The proposed concept for the IPLS architecture is based on the use of piezoelectric sensors of acoustic emissions distributed over the inner surface of the pressurized shell of the module that are connected to an electronic unit for processing signals from the sensors. The paper presents the results of studies of the scientific and engineering feasibility of the IPLS operating principles conducted at RSC Energia and TsNIIMash, as well as results of developmental tests on a prototype of such a system in the Service Module of the International Space Station (ISS) in the space experiment Otklik conducted under the Applied Research Program of the ISS Russian Segment.

Key words: International Space Station, ISS Russian Segment, meteoroid, space debris, pressure shell, immediate puncture localization system, piezoelectric sensor, space experiment, high-velocity impact, penetration.

Reference

1. Preservation of Near-Earth Space for Future Generations. Ed. by J.A. Simpson. Cambridge University Press, 1994. DOI: https://doi.org/10.1017/CBO9780511564925.
2. Christiansen E.L. Design Practices for Spacecraft Meteoroid/Debris (M/D) Protection. Proceedings of Hypervelocity Shielding Workshop, Galveston, Texas, USA, March 811, 1998, pp. 19.
3. Markov A.V., Konoshenko V.P., Beglov R.I., Sokolov V.G., Gorbenko A.V. Osnovnye napravleniya i rezul'taty rabot po zashchite Rossiiskogo segmenta MKS ot meteoroidov i kosmicheskogo musora [Main areas and results of work to protect the ISS Russian Segment from meteoroids and space debris]. Kosmicheskaya tekhnika i tekhnologii, 2018, no. 4(23), pp. 1628.
4. Sokolov V.G., Gorbenko A.V. Analiz posledstvii povrezhdeniya konstruktsii Rossiiskogo segmenta MKS, vyzvannogo stolknoveniem s oskolkom kosmicheskogo musora [nalysis of consequences of structural damage to the ISS Russian segment caused by collision with space debris]. Kosmicheskaya tekhnika i tekhnologii, 2019, no. 4(27), pp. 6576.
5. Bauer W., Romberg O., Wiedemann C., Drolshagen G., Vorsmann P. Development of in-situ Space Debris Detector. Advances in Space Research, 2014, vol. 54, issue 9, pp. 18581869.
6. Kovalev I.I., Konoshenko V.P., Sokolov V.G., Sorokin I.V., Solov'ev V.V. Registratsiya mikrometeoroidnykh i tekhnogennykh chastits s pomoshch'yu kondensatornykh datchikov, ustanovlennykh na sluzhebnom module MKS [Micrometeoroid and space debris particle registration by means of condensing sensors on-board ISS Service module]. Report presented on International Astronautics Congress (IAC), Glazgo, UK, September 2008, IAC-08-A6.5.1.
7. Prosser W.H., Gorman M.R., Humes D.H. Acoustic Emission Signals in Thin Plates Produced by Impact Damage. Journal of Acoustic Emission, 1999, vol. 17(12), pp. 2936.
8. Schafer F., Janovsky R. Impact sensor network for detecting of hypervelocity impacts on spacecraft. IAC-04-IAA.5.12.04, 55th International Astronautical Congress 2004, Vancouver, Canada.
9. Liu Wugang, Sun Fei, Pang Baojun, Zhang Wei. Acoustic emission detection and location for hypervelocity impacts. Proceedings of the Fourth European Conference on Space Debris, Darmstadt, Germany, 1820 April 2005.
10. Feldshtein V.A. Uprugie volny v obolochkakh, vozbuzhdaemye sosredotochennym impul'som [Elastic waves in shells excided by concentrated momentum]. Kosmonavtika i raketostroenie, 2017, issue 6(99), pp. 3845.
11. Korn G., Korn T. Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov [Mathematical handbook for scientists and engineers]. Moscow, Nauka publ., 1970. P. 575576.
12. Polovnev A.L. Opredelenie koordinat tochki proboya vysokoskorostnoi chastitsei na bortu sluzhebnogo modulya Mezhdunarodnoi kosmicheskoi stantsii [Coordinates determination of puncture point caused by high-velocity particle on-board of the Service module of International Space Station]. Nauchnyi vestnik MGTU GA. Ser. Aeromekhanika i prochnost', 2009, no. 138, pp. 198204.
13. Aversh'ev S., Lipnitskii Yu., Makarevich G., Mamadaliev N., Pelipenko L., Polovnev A., Skalkin A., Tret'yakov P., Shokolov A. Proboi stenki germootseka kosmicheskogo apparata vysokoskorostnoi chastitsei s obrazovaniem akusticheskikh voln [Spacecraft pressure wall penetration by high velocity particle accompanied by acoustic waves generation]. Uchenye zapiski TsAGI, 2015, vol. XLVI, issue 1, pp. 4251.

 

05.13.01 SYSTEMS ANALYSIS, CONTROL AND DATA PROCESSING (ENGINEERING)

Voronin F.A.
INFORMATION CONTROL SYSTEM OF THE RUSSIAN SEGMENT OF THE INTERNATIONAL SPACE STATION

The development of Information Control System (ICS) of the Russian Segment of the International Space Station is considered. This Information Control System is intended for automatic and manual control of space experiments. To create high-tech conditions for scientific experiments on the ISS RS, RSC Energia performs operations for the ICS modernization on the Service Module, as well as the creation of ICS on the planned Multipurpose Laboratory Module and Science Power Module. The ICS modernization phases and principles are reviewed.
The conduct of a series of high-tech scientific experiments was a practical result of the Service Module Information Control System (ICS) modernization. In 2014 two cameras were installed on the ISS. Today scientific experiment Icarus is being prepared for flight tests.
The experience gained during experiments carried out allows to suggest that the ISS RS ICS will become a modern system allowing to implement the most ambitious experiments in the automatic mode on the ISS.

Key words: Information Control System, ISS, space experiments, science hardware.

Reference

1. Mikrin E.A. Perspektivy razvitiya otechestvennoi pilotiruemoi kosmonavtiki (k 110-letiyu so dnya rozhdeniya S.P. Koroleva) [Outlook for our countrys manned spacelight development (to mark the 110th anniversary of S.P. Korolev]. Kosmicheskaya tekhnika i tekhnologii, 2017, no. 1(16), pp. 511.
2. Belyaev M.Yu. Nauchnye eksperimenty na kosmicheskikh korablyakh i orbital'nykh stantsiyakh [Scientific experiments on spacecraft and space stations]. Moscow, Mashinostroenie publ., 1984. 264 p.
3. Belyaev M.Yu. Puti i metody povysheniya effektivnosti tselevogo ispol'zovaniya orbital'nykh stantsii. V sb. Problemy i zadachi povysheniya effektivnosti programm issledovanii na kosmicheskikh korablyakh i orbital'nykh stantsiyakh [Ways and means to improve the efficiency of the designated use of space stations. In coll. vol. Challenges increase the effectiveness of research programs on space ships and space stations]. Raketno-kosmicheskaya tekhnika. Trudy. Ser. XII. Korolev: RKK Energiya publ., 2011, issue 12, pp. 1627.
4. Mikrin E.A., Markov A.V., Sorokin I.V., Gusev S.I., Putan D.B., Dunaeva I.V. Primenenie novykh informatsionnykh tekhnologii dlya povysheniya effektivnosti tselevogo ispol'zovaniya Rossiiskogo segmenta MKS. Materialy XXXVI akademicheskikh chtenii po kosmonavtike [The use of new information technologies to improve the efficiency of target use of the ISS Russian Segment. Materials XXXVI Academic Conference on Astronautics]. RAS Commission on developing scientific heritage of the pioneers of space exploration. Moscow, 2012. Pp. 449450.
5. Voronin F.A., Pakhmutov P.A., Sumarokov A.V. O modernizatsii informatsionno-upravlyayushchei sistemy Rossiiskogo segmenta Mezhdunarodnoi kosmicheskoi stantsii [On information-control system modernization introduced in the Russian segment of International Space Station]. Vestnik MGTU im. N.E. Baumana. Ser. Priborostroenie, 2017, no. 1, pp. 109122. DOI: 10.18698/0236-3933-2017-1-109-122.
6. Voronin F.A., Kharchikov M.A. Soprovozhdenie provedeniya nauchnykh eksperimentov na Mezhdunarodnoi kosmicheskoi stantsii (na primere eksperimenta Napor-Mini RSA) [Support of scientific experiments at the International Space Station (for example, Napor-Mini RSA experiment)]. RAS, State Corporation Roskosmos, the RAS Commission on developing scientific heritage of the pioneers of space exploration, MGTU im. N.E. Baumana. Moscow, MGTU im. N.E. Baumana publ., 2015. 363 p.
7. Voronin F.A., Dunaeva I.V. Informatsionno-upravlyayushchaya sistema dlya provedeniya nauchnykh eksperimentov na Mezhdunarodnoi kosmicheskoi stantsii [Information control system for space experiments onboard International Space Station]. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie, 2017, vol. 16, no. 1, pp. 2030. DOI: 10.18287/2541-7533-2017-16-1-20-30.
8. Kharchikov M.A., Voronin F.A., Kartashev S.V. Programmno-matematicheskaya model' pribora GTS-2, ustanovlennogo na RS MKS [Software-mathematical model of GTS-2 devices installed on the ISS RS]. Molodezhnyi nauchno-tekhnicheskii vestnik. MGTU im. N.E. Baumana publ., 2014, no. 7, pp. 489495.
9. Mikrin E.A., Gusev S.I., Dunaeva I.V, Voronin F.A., Pakhmutov P.A., Kartashev S.V. Realizatsiya na RS MKS eksperimenta po distantsionnomu zondirovaniyu Zemli s pomoshch'yu sistemy opticheskikh teleskopov [Implementation of the experiment on the ISS RS remote sensing of the Earth by means of optical telescope system]. Proceedings XXXX Academic Conference on Astronautics. Moscow, January2015, p. 402.
10. Belyaev M.Yu., Vikel'ski M., Lampen M., Legostaev V.P., Myuller U., Naumann V., Tertitskii G.M., Yurina O.A. Tekhnologiya izucheniya peremeshcheniya zhivotnykh i ptits na Zemle s pomoshch'yu apparatury ICARUS na Rossiiskom segmente MKS [Technology for studying movements of animals and birds on Earth using ICARUS equipment on the Russian segment of the ISS]. Kosmicheskaya tekhnika i tekhnologii, 2015, no. 3(10), p. 3851.