English

Abstracts

 2 (25) april-june 2019

The Space Engineering and Technology magazine
 2 (25), 2019

Contents

05.07.10 INNOVATIVE TECHNOLOGIES IN AEROSPACE ACTIVITIES

Makushenko Yu.N., Murtazin R.F., Zarubin D.S.
The cislunar spaceport for the crew delivery to the lunar surface

The success of the International Space Station program has inspired the partners to review possible steps in space exploration beyond Low Earth Orbit. The Moon, Mars, or asteroids the priorities of partners national programs could be different. Understanding of the deep space exploration viability by the joint team led partners to consideration regarding Cis-Lunar Platform which will become a Spaceport and should facilitate the implementation of the national programs.
At the present time a concept of the Spaceport located on high-elliptical lunar orbit is being widely discussed. The Spaceport is considered to be a transportation hub supporting deep space exploration programs: missions to the Moon, asteroids, Mars and other natural and artificial objects.
Different schemes of crew delivery to the lunar surface using Lunar Lander based and serviced at the Spaceport are compared in the paper. The Spaceport utilization significantly reduces transportation operations time limits and provides conditions for reusable lunar spacecraft implementation.

Key words: Cis-lunar spaceport, high-elliptical lunar orbit, ascent module, descant module, reusable lunar crew vehicle.

Reference

1. Luna shag k tekhnologiyam osvoeniya Solnechnoi sistemy [The Moon a step toward the development of the solar system exploration]. Sci. ed. Legostaev V.P., Lopota V.A. Moscow, RSC Energia publ., 2011. 584 p.
2. Makushenko Yu., Murtazin R., Derechin A., Zarubin D. The cislunar spaceport: An effective approach for the crew delivery to the Lunar surface. 68th International Astronatical Congress, Adelaide, Australia, 2529 September 2017, IAC-17,A5,1,2.
3. Raketno-kosmicheskaya korporatsiya Energiya imeni S.P. Koroleva. 19461996 [S.P. Korolev Rocket and Space Corporation Energia. 19461996]. Moscow, RSC Energia publ., 1996. 671 p.
4. Whitley R., Martinez R. Options for staging orbits in cis-lunar space. Available at: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150019648.pdf (accessed 11.04.2019).
5. Murtazin R. Rendezvous missions: From ISS to lunar space station. Acta Astronautica, 2014, vol. 101, p. 151156.
6. Makushenko Yu., Murtazin R., Zarubin D., Beglov R., Loupiak D. Orbital spaceport a new profession for the Earth-orbit space stations. 69th International Astronautical Congress, 15 October 2018, Bremen, Germany, IAC-18, A5,1,11.
7. Isakowitz S.J., Hopkins J.P., Hopkins J.B. International reference guide to space launch systems. 4th ed. AIAA, 2004. 630 p.
8. Ulybyshev Yu. Study of optimal transfers from L2 halo-orbits to lunar surface. 54th AIAA Aerospace Sciences Meeting, 48 January 2016, San-Diego, CA, USA. AIAA Paper 2016-0480. 15 . DOI: 10.2514/6.2016-0480.
9. Derechin A.G., Zharova L.N., Sinyavskiy V.V., Solntsev V.L., Sorokin I.V. Mezhdunarodnoe sotrudnichestvo v sfere pilotiruemykh poletov. Chast 1. Istoricheskii obzor [International cooperation in manned spaceflight. Part 1. Historical background]. Kosmicheskaya tekhnika i tekhnologii, 2017, no. 1(16), pp. 1231.
10. Derechin A.G., Zharova L.N., Sinyavskiy V.V., Solntsev V.L., Sorokin I.V. Mezhdunarodnoe sotrudnichestvo v sfere pilotiruemykh poletov. Chast 2. Sozdanie I ekspluatatsiya ISS [International cooperation in the sphere of manned flights. Part 2. Development and operation of the ISS]. Kosmicheskaya tekhnika i tekhnologii, 2017, no. 2(17), p. 528.

 

Maevskiy V.A., Aseev V.V., Ivlev A.S., Nizhelskiy N.A., Sysoev M.A., Sinyavskiy V.V.
Some possible fields of utilization of high-temperature superconductivity in lunar exploration program

The article presents possible options to solve problems characteristic of the lunar program using devices with elements of high-temperature superconductivity technology (HTSC). Both the general state of work on high-temperature superconductivity technologies and types of HTSC products and their main characteristics are considered preliminarily. According to foreign information materials, the possible options are described to use HTSC assemblies for solving tasks on the lunar surface.
It is shown that conditions on the lunar surface are more attractive for operation of HTSC devices than on the surface of the Earth.
Combining HTSC and lunar technologies is related to the purpose of reducing the mass and dimensions and increasing the service life of the equipment for operation on the Moon. The main attention in the article is paid to devices with bulk HTSC and, above all, taking into account the possible wide use on the lunar surface to magnetic HTSC bearings, including for the kinetic energy storage, a telescope. The list of devices with HTSC assemblies that can be efficiently used for the optimal solution of many urgent tasks is given and their features are described.

Key words: high-temperature superconductivity, bulk HTSC, magnetic HTSC bearing, lunar surface, kinetic energy storage, telescope.

Reference

1. Vysotskiy V.S., Sytnikov V.E., Ilyushin K.V., Kovalev L.K., Kovalev K.L. Sverkhprovodimost' v elektromekhanike i elektrotekhnike [Superconductivity in electromechanics and electrical engineering]. Elektrichestvo, 2005, no. 7, pp. 3141.
2. Hull J.R. Superconducting bearings. Supercond. Sci. Technol., 2000, vol. 13, pp. RIR15.
3. Kovalev L.K., Kovalev K.L., Koneev S.M., Pan'shin V.T., Poltavets V.N. Elektromekhanicheskie preobrazovateli na osnove massivnykh vysokotemperaturnykh sverkhprovodnikov [Electromechanical converters based on massive high-temperature superconductors]. Moscow, MAI PRINT publ., 2008. 439 p.
4. Levin A.V., Musin S.M., Kharitonov S.A., Kovalev K.L, Gerasin A.A., Khalyutin S.H. Elektricheskiy samolet: kontseptsiya i tekhnologii [Electrical aircraft: concept and technologies]. Ed. by Musin S.M. Ufa, Ufimsk. Gos. aviats. tekhn. un-t publ., 2014. 387 p.
5. Sass F., Dias D.H., Sitelo G.G., de Andrade R. (Jr.) Coated conductors for the magnetic bearing application. Physics Procedia, 2012, 36, pp. 10081013. DOI: 10.1016/j.phpro.2012.06.097.
6. Polushchenko O.L., Matveev V.A, Nizhel'skiy N.A. Magnitnyy podves s diskovymi monodomennymi VTSP-elementami na rotore [Magnetic suspension with disk single-domain HTSC elements on the rotor]. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie, 2006, no. 2, pp. 1522.
7. Werfel F.N., Floegel-Delor U., Riedel T., Rothfeld R., Wippich D., Goebel B. Encapsulated HTS bearings technical and cost consideration. IEEE Transaction on Applied Superconductivity, 2005, vol. 15, no. 2, pp. 23062311.
8. Werfel F.N., Floegel-Delor U., Riedel T., Rothfeld R., Wippich D., Goebel B. HTS magnetic bearings in prototype application. IEEE/CSC&ESAS European superconductivity news forum, 2010, no. 12, pp. 16.
9. Wei-Kan Ch. HTS Bulk applications and early prototypes at TeSUH. 1st International Workshop on Lunar Superconductor Applications, March 35, 2011, Houston, Texas, p. 21.
10. Aseev V.V., Ivlev A.S., Maevskiy V.A., Nizhel'skiy N.A., Sysoev M.A., Al'tov V.A. Magnitnye VTSP-opory tsilindricheskogo tipa dlya gorizontal'nykh valov [Magnetic HTSC supports of a cylindrical type for horizontal shafts]. Izvestiya akademii elektrotekhnicheskikh nauk RF, 2017, issue 19, pp. 6471.
11. Koshizuka N. The superconducting magnetic bearings and magnetic clutches for flywheel energy storage. NEDO Project (20002004), p. 22.
12. Matveev V.A., Maevskiy V.A., Aseev V.V., Ivlev A.S., Sysoev M.A. Primenenie ob"emnykh vysokotemperaturnykh sverkhprovodnikov v perspektivnykh kosmicheskikh sistemakh [The use of high-temperature volume superconductors in the advanced space systems]. Vestnik MGTU im. N.E. Baumana. Ser. Priborostroenie, 2016, no. 1, pp. 1532.
13. Luna shag k tekhnologiyam osvoeniya Solnechnoy sistemy [The Moon a step to technologies of the Solar System exploration]. Sci. ed. by V.P. Legostaev, V.A. Lopota. Moscow, RKK Energiya publ., 2011. 550 p.
14. Gribkov A.S., Romanov S.Yu., Sevast'yanov N.N., Sinyavskiy V.V. Lunnyy dobyvayushchiy i promyshlenno-pererabatyvayushchiy kompleks na baze atomnoy teploelektrostantsii [Lunar mining and industrial processing complex based on the nuclear thermal power plant]. Izvestiya RAN. Energetika, 2007, no. 3, pp. 2234.
15. Bryukhanov N.A., Legostaev V.P., Lobykin A.A., Lopota V.A., Sizentsev G.A., Sinyavskiy V.V., Sotnikov B.I., Filippov I.M., Shevchenko V.V. Ispol'zovanie resursov Luny dlya issledovaniya i osvoeniya Solnechnoy sistemy v XXI veke [Use of lunar resources for Solar System exploration and exploitation in the 21st century]. Kosmicheskaya tekhnika i tekhnologii, 2014, no. 1(4), pp. 314.
16. Program and abstracts. Lunar superconductor applications. 1st International Workshop on Lunar Superconductor Applications, March 35, 2011, Houston, Texas.
17. Kumar Krishin. NASA. The 2011 Lunar Superconductor Applications. 1st International Workshop on Lunar Superconductor Applications, March 35, 2011, Houston, Texas, p. 6.
18. Weinstein R., Sawh R., Park D. Trapped field magnets: basic and applications on low ambient temperature. 1st International Workshop on Lunar Superconductor Applications, March 35, 2011, Houston, Texas. P. 21.
19. Beno J., Wuks D.W., Zierer J.J., Hayes R.J. Application of Bulk high temperature superconductors (HTS) for flywheels, energy storage systems on Lunar Poles. 1st International Workshop on Lunar Superconductor Applications, sessions overview, March 35, 2011, Houston, Texas, p. 10.
20. Chen P.C., Lowman P.D., Rabin D.M. HTS and Moon dust key ingredients for lunar, science, infrastructure, and space exploration. 1st International Workshop on Lunar Superconductor Applications, March 35, 2011, Houston, Texas, p. 26.
21. Ignatiev A., Putman P. Lunar regolith excavation and transport by superconducting magnetic transport. 1st International Workshop on Lunar Superconductor Applications, March 35, 2011, Houston, Texas, p. 21.
22. Jones L.L., Wilson W.R., Peck M.A. Design parameters and validation for a non-contacting flux-pinned docking interface. Cornell University, Ithaca, New York, 14850.
23. Shevchenko V.V. Utilizatsiya privnesennogo na Lunu asteroidnogo veshchestva kak bolee ekonomichnyy put' k polucheniyu kosmicheskikh resursov vysokoy tochnosti [Utilization of the asteroid subject on the Moon a more economic way to obtain cosmic resources of high value]. Kosmicheskaya tekhnika i tekhnologii, 2018, no. 1(20), pp. 522.
24. Sinyavskiy V.V. Obzor kontseptual'nykh proektov robotizirovannykh kosmicheskikh kompleksov dlya dobychi na Lune termoyadernogo topliva geliya-3 [Overview of conceptual projects of robotized space systems for mining of helium-3 thermonuclear fuel on the Moon]. Robototekhnika i tekhnicheskaya kibernetika, 2018, no. 2, pp. 515.
25. Gribkov A.S. Tekhnologii i energozatraty dlya kosmicheskogo proizvodstva metallicheskikh rabochikh tel raketnykh dvigateley [Technologies and power consumption for space production of metal working bodies of rocket engines]. Izvestiya RAN. Energetika, 2009, no. 2, pp. 112117.
26. Sizentsev G.A., Sotnikov B.I. Kontseptsiya kosmicheskoy sistemy regulirovaniya termicheskogo rezhima zemnoy atmosfery [The concept of the space control system of the Earth atmosphere thermal mode]. Izvestiya RAN. Energetika, 2009, no. 2, pp. 91100.

 

05.07.02 FLYING VEHICLES ENGINEERING, DESIGN AND MANUFACTURING

Bobe L.S., Salnikov N.A.
Analysis and calculation of the process of low-pressure reverse osmosis during recycling of hygienic water

Analysis and calculation have been conducted of the process of low-pressure reverse osmosis in the membrane apparatus of the system for recycling hygiene water for the space station. The paper describes the physics of the reverse osmosis treatment and determines the motive force of the process, which is the difference of effective pressures (operating pressure minus osmotic pressure) in the solution near the surface of the membrane and in the purified water. It is demonstrated that the membrane scrubbing action is accompanied by diffusion outflow of the cleaning agent components away from the membrane. The mass transfer coefficient and the difference of concentrations (and, accordingly, the difference of osmotic pressures) in the boundary layer of the pressure channel can be determined using an extended analogy between mass transfer and heat transfer. A procedure has been proposed and proven in an experiment for calculating the throughput of a reverse osmosis apparatus purifying the hygiene water obtained through the use of a cleaning agent used in sanitation and housekeeping procedures on Earth.

Key words: life support system, hygiene water, water processing, low-pressure reverse osmosis, space station.

Reference

1. Sal'nikov N.A., Bobe L.S., Kochetkov A.A., Zheleznyakov A.G., Andreychuk P.O., Shamshina N.A. Primenenie membrannoy apparatury dlya regeneratsii sanitarno-gigienicheskoy vody na kosmicheskoy stantsii [Use of membrane equipment for hygiene water processing aboard the space station]. Kosmicheskaya tekhnika i tekhnologii, 2018, no. 4(23), pp. 2939.
2. Patent 2625247. Rossiyskaya Federatsiya. Sposob obratnoosmoticheskoy ochistki sanitarno-gigienicheskoy vody v zamknutom konture v usloviyakh nevesomosti [The reverse osmosis cleaning method for sanitary water is the closed loop in weightlessness]. Bobe L.S., Kochetkov A.A., Rykhlov N.V., Sal'nikov N.A., Korobkov A.E., TSygankov A.S., KHalilullina KH.SH., Rukavitsin S.N.; the applicant and the patent owner AO NIIkhimmash; application 2015137625 of 04.09.2015; priority of 04.09.2015; published 12.07.2017.
3. Patent 174887. Rossiyskaya Federatsiya. Ustroystvo obratnoosmoticheskoy ochistki sanitarno-gigienicheskoy vody v zamknutom konture v usloviyakh nevesomosti [The reverse osmosis cleaning apparatus for sanitary water in the closed loop in weightlessness]. Bobe L.S., Kochetkov A.A., Rykhlov N.V., Sal'nikov N.A., Korobkov A.E., Tsygankov A.S., Khalilullina Kh.Sh., Rukavitsin S.N.; the applicant and the patent owner AO NIIkhimmash; application 2016134638 of 25.08.2016; priority of 25.08.2016; published 09.11.2017. Byulleten' no. 31.
4. Sal'nikov N.A., Bobe L.S., Kochetkov A.A., Sinyak YU.E. Regeneratsiya sanitarno-gigienicheskoy vody na perspektivnykh kosmicheskikh stantsiyakh [Regeneration of sanitary water at the advanced space stations]. Aviakosmicheskaya i ekologicheskaya meditsina, 2017, vol. 51, no. 5, pp. 4754.
5. Slesarenko V.N. Opresnenie morskoy vody [Desalination of sea water]. Moscow, Energoatomizdat publ., 1991. 278 p.
6. Dytnerskiy Yu.I. Baromembrannye protsessy. Teoriya i raschet [Baromembrane processes. Theory and design]. Moscow, Khimiya publ., 1986. 272 p.
7. Mulder M. Vvedenie v membrannuyu tekhnologiyu [Introduction to membrane technology]. Moscow, Mir publ., 1999. 513 p.
8. Izmaylov N.A. Elektrokhimiya rastvorov [Electrochemistry of solutions]. Moscow, Khimiya publ., 1976. 328 p.
9. Bobe L.S., Malyshev D.D., Rakov V.V., Samsonov N.M., Soloukhin V.A. Teplo- i massoobmen v parogazovoy faze pri kondensatsii para iz smesey parov i parogazovykh smesey. Teplo- i massoperenos [Heat and mass transfer in vapor-gas phase during condensation of steam from vapor mixtures and vapor-gas mixtures. Heat and mass transfer]. Minsk, AN BSSR publ., 1972. Vol. II, part 1, pp. 475480.
10. Bobe L.S. Protsessy sovmestnogo teplo- i massoobmena [Processes of the joint heat and mass transfer]. Moscow, MAI publ., 1985. 56 p.
11. Leont'ev A.I., Malyshev D.D. Inzhenernye metody rascheta teplo- i massoobmena pri kondensatsii iz turbulentnogo neodnorodnogo pogranichnogo sloya [Engineering methods for calculation of heat and mass transfer during condensation from a turbulent inhomogeneous boundary layer]. Teploenergetika, 1976, no. 6, pp. 812.
12. Kutateladze S.S., Leont'ev A.I. Teplomassoobmen i trenie v turbulentnom pogranichnom sloe [Heat and mass transfer and friction in a turbulent boundary layer]. Moscow, Energoatomizdat publ., 1985. 320 p.
13. Bobe L.S., Rakov V.V., Arakcheev D.V., Kanaev P.A. Vliyanie nekondensiruyushchikhsya gazov na protsess teplomassoobmena v tsentrobezhnom distillyatore sistemy regeneratsii vody iz uriny [The effect of noncondensable gases on the process of heat and mass transfer in a centrifugal distiller of the system for water regeneration from urine]. Trudy MAI, 2012, no. 52. Available at: http://trudymai.ru/published.php?ID=29414 (accessed 24.09.2018).
14. Svittsov A.A. Vvedenie v membrannye tekhnologii [Introduction to membrane technologies]. Moscow, DeLi print publ., 2008. 208 p.
15. Tekhnicheskoe opisanie i instruktsiya po ekspluatatsii. Elementy membrannye obratnoosmoticheskie serii NanoRO: normativno-tekhnicheskiy material [Technical description and operation manual. The membrane reverse osmosis elements of the NanoRO series: normative and technical material]. Vladimir, AO RM Nanotekh publ., 2014. 13 p.
16. Adazhio. Zhidkoe krem-mylo, perlamutrovoe, 5 l, Aloe Vera, s antibakterial'nym effektom. Opisanie produktsii [Adazhio. Liquid cream soap, pearl-colored, 5 l, Aloe Vera with antibacterial effect. Product description]. GK Akvalon, 19892018. Available at: http://www.aqualongroup.ru/catalog/sredstva-lichnoy-gigieny/adazhio-zhidkoe-krem-mylo-perlamutrovoe-5-l-aloe-vera-s (accessed 24.09.2018).

 

Berkovich Yu.A., Smolyanina S.O., Zheleznyakov A.G., Guzenberg A.S.
Prospects for using space greenhouses as a part of a suite of crew life support systems of a lunar orbital station, a lunar base and interplanetary transfer vehicles

It is planned to include greenhouses in the suite of regenerative life support systems for crews of manned long-duration space vehicles to improve their habitability. Space greenhouses will provide crew members with green vegetables containing digestible vitamins and dietary fibers, as well as psychophysiological support during long space missions. The paper presents an analytical review of designs of a number of greenhouses in our country and abroad, both existing and under construction that are capable of operating in spaceflight environment. It describes their key design and operational properties, analyses problems standing in the way of developing more productive space greenhouses.
It explains the advantages of our countrys conveyor-type space greenhouse with cylindrical planting surface for continuous production of vitamin-rich greens and other vegetables onboard a manned spacecraft. It points out the need to construct our countrys ground prototype for a full-scale space greenhouse to develop the process for growing plants in orbital station, transportation vehicles, in lunar and Martian outposts.

Key words: regenerative life support systems, habitat, space greenhouse, cylindrical planting surface.

Reference

1. Dmitrienko I. Zasidelis' na Zemle. Kosmicheskaya deyatel'nost' stran mira [Stayed too long on Earth]. Informatsionnyy byulleten', 2018, no. 10, pp. 413.
2. Roskosmos: Rossiya planiruet postroit' bazu na Lune v 20302035 gg. [Roscosmos: Russia plans to build a base on the Moon in 20302035]. TASS Report, 5 April 2016. Available at: http://tass.ru/kosmos/3178557 (accessed 30.05.2018).
3. Jones H.W. Equivalent mass versus life cycle cost for life support technology selection. SAE technical paper, 2003-01-22082, 2003.
4. Jones H.W. Comparizon of bioregenerative and physical/chemical life support systems. ICES 2006-01-2082, 2006.
5. Czupalla M., Dirlich T., Bartsev S.I. An approach to LSS optimization based on equivalent system mass, system stability and mission success. SAE technical paper, 2007-01-3222, 2007.
6. Hanford A.J. BVARD: Advanced life support baseline values and assumptions document. NASA JSC-47804. 2004.
7. Jones H.W. Design and analysis of a flexible, reliable deep space life support system. AIAA 2012-3418, 2012, pp. 127.
8. Bartsev S.I. Optimal design of biological life support systems: criteria and problems. Current Biotechnology, 2013, vol. 2, pp. 208216.
9. Levinskikh M.A., Sychev V.N., Signalova O.B., Derendyaeva T.A., Podol'skiy I.G., Masgreyv M.E., Bingkheym G.E. Rost i razvitie rasteniy v ryadu pokoleniy v usloviyakh kosmicheskogo poleta v eksperimente Oranzhereya-3 [Growth and development of plants in many generations in space flight conditions in experiment Oranzhereya-3]. Aviakosmicheskaya i ekologicheskaya meditsina, 2001, vol. 35(3), pp. 4348.
10. Levinskikh M.A., Sychev V.N., Gushchin V.I., Karetkin A.G., Signalova O.B., Derendyaeva T.A., Nefedova E.L., Poddubko S.V., Podol'skiy I.G., Mikhaylov N.I. Oranzhereya v sostave sistemy zhizneobespecheniya eksperimenta so 105-sutochnoy izolyatsiey: biologicheskie, tekhnologicheskie i psikhologicheskie aspekty [The greenhouse as part of the life-support system of the experiment with a 105-day isolation: biological, technological and psychological aspects]. Aviakosmicheskaya i ekologicheskaya meditsina, 2010, vol. 44(4), pp. 5761.
11. Gushchin V.I., Shved D.M., Levinskikh M.A., Vinokhodova A.G., Signalova O.B., Smoleevskiy A.E. Ekopsikhologicheskie issledovaniya v usloviyakh 520-sutochnoy izolyatsii [Ecopsychological research in conditions of a 520-day isolation]. Aviakosmicheskaya i ekologicheskaya meditsina, 2014, vol. 48(3), pp. 2529.
12. Berkovich Yu.A., Krivobok N.M., Sinyak Yu.Ye., Smolyanina S.O., Grigoriev Yu.I., Romanov S.Yu., Guissenberg A.S. Developing a vitamin greenhouse for the life support system of the International space station and for future interplanetary missions. Advances in Space Research, 2004, no. 34, pp. 15521557.
13. Romanov S.Yu., Zheleznyakov A.G., Telegin A.A., Guzenberg A.S., Andreychuk P.O., Protasov N.N., Berkovich Yu.A. Sistemy zhizneobespecheniya ekipazhey dlitel'nykh mezhplanetnykh ekspeditsiy [Life-support systems for crews of long-duration expeditions]. Izvestiya RAN. Energetika, 2007, no. 3, pp. 5774.
14. Berkovich Yu.A., Smolianina S.O., Krivobok N.M., Erokhin A.N., Agureev N.A., Shanturin N.A. Vegetable production facility as a part of a closed life support system in a Russian Martian space flight scenario. Advances in Space Research, 2009, no. 44, pp. 170176.
15. Massa G.D., Newsham G., Hummerick M.E., Caro J.L., Stutte G.W., Morrow R.C., Wheeler R.M. Preliminary species and media selection for the Veggie space hardware. Gravitational and Space Research, 2013, no. 1, pp. 95106.
16. Massa G.E., Dufour N.F., Carver J.A., Hummerick M.E., Wheeler R.M., Morrow R.C., Smith T.M. VEG-01: Veggie hardware validation testing on the International Space Station. Open Agriculture, 2017, no. 2, pp. 3341.
17. Berkovich Yu.A., Derendyaeva T.A., Ivanova I.E., Mashinskiy A.L., Meleshko G.I., Ivanova T.N. Preliminary results at the first stage of the SVET space greenhouse exploitation in space flight. Proceedings of the 2-nd micro-symposium SVET-90 on Biotechnology and life supports of the space biology working group, Bulgarian Academy of sciences, 1991. P. 2536.
18. Certificate of authorship 1598926 SSSR. Vegetatsionnyy sosud dlya rasteniy [Vegetative vessel for plants]. Berkovich Yu.A., Simonov V.M., Shaydorov Yu.I., Ivanova T.N., Strugov O.M., Kostov P.P., Kynchev N.A.; application 4455407/30-15 of 08.07.1988; published 15.10.1990. Byulleten no. 38, 5 p.
19. Certificate of authorship 1424774 SSSR. Vegetatsionnyy sosud dlya rasteniy [Vegetative vessel for plants]. Berkovich Yu.A., Simonov V.M., Shaydorov Yu.I., Ivanova T.N., Strugov O.M., Kostov P.P., Kynchev N.A.; application 4174301/30-15 of 26.12.1986; published 23.09.1988. Byulleten no. 35, 4 p.
20. Morrow R.C., Wetzel J.P., Richter R.C., Crabb T.M. Evolution of space-based plant growth technologies for hybrid life support systems. ICES, 2017-301, 2017, pp. 19.
21. Massa G.D., Wheeler R.M., Morrow R.C. Levine H.G. Growth chambers on the International Space Station for large plants. Acta Hortic., 2016, vol. 1134, pp. 215222.
22. Nakamura T., Monje O., Bugbee B. Solar food production and life support in space exploration. AIAA 2013-5399, 2013, pp. 19.
23. Kliss M., MacElroy R.D. Salad Machine: a vegetable production unit for long duration space missions. ICES, 901280, 1990.
24. Kliss M., Heyenga G., Hoehn A., Stodieck L. Toward development of a Salad-Machine, ICES, 2000-01-2476, 2000.
25. Zabel P., Bamsey M., Schubert D., Tajmar M. Review and analysis of over 40 years of space plant growth systems. Life Sciences in Space Research, 2016, vol. 10, pp. 116.
26. Farges B., Poughon L., Creuly C., Cornet J.-F., Dussap C.-G., Lasseur C. Dynamic aspects and controllability of the MELiSSA project: a bioregenerative system to provide life support in space. Applied Biochemistry and Biotechnology, 2008, vol. 151, pp. 686699.
27. Maiwald V., Quantius D., Schubert D., Zabel P., Zeidler C., Vrakking V. Glance into the future: research steps on a path to a continuous human presence on Moon, Mars and beyond. Acta Futura, 2016, vol. 10, pp. 4559.
28. Zeidler C., Vrakking V., Bamsey M., Poulet L., Zabel P., Schubert D., Paille C., Mazzoleny E., Domurath N. Greenhouse module for space system: a lunar greenhouse design. Open Agriculture, 2017, no. 2, pp. 116132.
29. Shen Yu., Guo S., Zhao P., Wang L., Wang X., Li J., Bian Q. Research on lettuce growth technology onboard Chinese Tiangong II Spacelab. Acta Astronautica, 2018, vol. 144, pp. 97102.
30. Fu Yu.A., Liu H., Shao L., Wanga M., Berkovich Yu A., Erokhin A.N. A high-performance ground-based prototype of horn-type sequential vegetable production facility for life support system in space. Advances in Space Research, 2013, no. 52, pp. 97104.
31. Guo S., Dong W., Ai W., Feng H., Tang Y., Huang Z., Shen Y., Ren J., Qin L., Zeng G., Zhang L., Zhu J., Fei J., Xu G. Research on regulating technique of material flow for 2-person and 30-day integrated CELSS test. Acta Astronautica, 2014, vol. 100, pp. 140146.
32. Liu H. Bioregenerative life support experiments in Chinese Lunar Palace 1: results and future plans. IAC-15, A1,7,8,x30373. 2015. Available at: https://iafastro.directory/iac/archive/browse/IAC-15/A1/7/30373/ (accessed 26.05.2018).
33. Fu Yu., Li L., Xie B., Dong C., Wang M., Jia B., Shao L., Dong Y., Deng S., Liu Hui, Liu G., Liu B., Hu D., Liu Hong. How to establish a bioregenerative life support system for long-term crewed missions to the Moon or Mars. Astrobiology, 2016, vol. 16(12), pp. 925936.
34. Nechitailo G.S., Mashinsky A.L. Space biology. Studies at orbital stations. Moscow, Mir publ., 1993. 503 p.
35. Berkovich Yu.A., Krivobok N.M., Smolyanina S.O., Erokhin A.N. Kosmicheskie oranzherei: nastoyashchee i budushchee [Space greenhouses: present and future]. Moscow, Slovo publ., 2005. 368 p.
36. Kosmicheskaya biologiya i meditsina. Mediko-biologicheskie eksperimenty na OS Mir [Space biology and medicine. Biomedical experiments onboard the Mir OS]. Ed. by Grigor'ev A.I. 2002, vol. 2(6), pp. 319343.
37. Bingham G.E., Shane Topham T., Mulholland J.M., Podolsky I.G. Lada: the ISS plant substrate microgravity testbed. SAE Technical paper, 2002-01-2388, 2002.
38. Berkovich Yu.A., Korbut V.L., Pavlovskiy V.I. Oranzherei s krivolineynoy posadochnoy poverkhnost'yu [Greenhouses with a curved landing surface]. Kosmicheskaya i aviakosmicheskaya meditsina, 1985, no. 6, pp. 7780.
39. Berkovich Yu.A., Krivobok N.M., Sinyak Yu.E., Smolyanina S.O., Grigor'ev Yu.I., Romanov S.Yu., Guzenberg A.S. Problema sozdaniya salatnoy oranzherei dlya mezhdunarodnoy kosmicheskoy stantsii i posleduyushchikh mezhplanetnykh poletov [The problem of creating a lettuce greenhouse for the International Space Station and the subsequent interplanetary flights]. Aviakosmicheskaya i ekologicheskaya meditsina, 2002, vol. 36(5), pp. 812.
40. Berkovich Yu.A., Krivobok A.S., Krivobok N.M., Smolyanina S.O. Perspektivnyy metod organizatsii mineral'nogo pitaniya rasteniy primenitel'no k usloviyam mikrogravitatsii [The advanced method for organizing mineral nutrition of plants, as applied to microgravity conditions]. Aviakosmicheskaya i ekologicheskaya meditsina, 2014, vol. 48(3), pp. 5662.
41. Konovalova I.O., Berkovich Yu.A., Erokhin A.N., Smolyanina S.O., Yakovleva O.S., Znamenskiy A.I., Tarakanov I.G., Radchenko S.G., Lapach S.N. Obosnovanie optimal'nykh rezhimov osveshcheniya rasteniy dlya kosmicheskoy oranzherei Vitatsikl-T [Justification of optimal modes of lighting plants for space greenhouse Vitatsikl-T]. Aviakosmicheskaya i ekologicheskaya meditsina, 2016, vol. 50(4), pp. 2836.
42. Berkovich Yu.A., Smolyanina S.O., Krivobok N.M., Erokhin A.N., Agureev A.N., Shanturin N.A. Vegetable production facility as a part of a closed life support system in a Russian Martian space flight scenario. Advances in Space Research, 2009, vol. 44(2), pp. 170176.
43. Levinskikh M.A., Signalova O.B., Derendyaeva T.A., Livanskaya O.G., Nefedova E.L., Sychev V.N., Podol'skiy I.G. Razrabotka tekhnologii vyrashchivaniya i vybor ovoshchnykh listovykh kul'tur dlya kosmicheskikh oranzherey [Development of the cultivation technology and selection of vegetable leaf crops for space greenhouses]. Aviakosmicheskaya i ekologicheskaya meditsina, 2001, vol. 35(1), pp. 6167.
44. Krivobok A.S. Povyshenie resursa pochvozameniteley dlya oranzherei v sostave sistemy zhizneobespecheniya kosmicheskikh ekipazhey [Increasing the resource of soil substitutes for the greenhouse as part of the life-support system of space crews]. Avtoreferat diss. kand. biol. nauk. Moskva, 2013. 22 p.
45. Ilyin V.K., Korshunov D.V., Chuvilskaya N.G., Doronina N.V., Mardanov R.G., Moukhamedieva L.N., Novikova N.D., Starkova L.V., Deshevaya E.A. Microbial purification of waste biodegradation liquid products. Ecological engineering and environment protection, 2008, no. 1, pp. 4856.
46. Manukovsky N.S., Kovalev V.S., Rygalov V.Y., Zolotukhin I.G. Waste bioregeneration in life support CES: development of soil organic substrate. Advances in Space Research, 1997, vol. 20(10), pp. 18271832.
47. Velichko V.V., Ushakova S.A., Tikhomirov A.A. Ionoobmennyy substrat kak istochnik mobil'nykh form azota pri konveyernom metode vyrashchivaniya ovoshchnykh rasteniy na pochvopodobnom substrate [Ion-exchange substrate as a source of mobile forms of nitrogen using the conveyor cultivation method of vegetable plants on a soil-like substrate]. Aviakosmicheskaya i ekologicheskaya meditsina, 2014, vol. 48(4), pp. 5762.

 

Yaskevich A.V., Chernyshev I.E.
Choice of energy accumulator parameters for a new peripheral docking mechanism

Spacecraft docking is a controlled on-orbit mechanical assembly process realized using active and passive docking units. The docking mechanism of the active unit provides capture conditions, attenuation of active spacecraft approach energy, alignment and retraction of the docking units before their hard connection. A kinematical scheme of a new peripheral docking mechanism is considered in this paper. Instead of energy damping, it is based on energy accumulation using springs with controlled recoil blocking. The blocking is activated before docking and keeps the docking mechanism in its initial position. On the first contact signal, the blocking is switched off releasing the energy of compressed springs for quick forward moving of the docking ring and improving capture. The blocking is activated again after capture and approach energy is accumulated by the springs without returning to the mechanical system. Avoiding contacts of docking mechanism links between each other and with the docking unit body is important for peripheral mechanisms due to their design. A procedure for choosing parameters of an energy accumulator that allows attenuating a max permissible energy without link contacts and without exceeding the max permissible value of the axial interface load is considered here.

Key words: spacecraft, docking, docking mechanism.

Reference

1. Syromyatnikov V.S. Stykovochnye ustroystva kosmicheskikh apparatov [Spacecraft docking devices]. Moscow, Mashinostroenie publ., 1984. 216 p.
2. International Docking System Standard (IDSS) Interface Definition Document (IDD). Available at: http://internationaldockingstandard.com (accessed 19.09.2018).
3. Paijmans B., De Vriend K., Dittmer H., Urmston P., Gracia O. The International berthing docking mechanism a new European docking system. Proc. of the 63rd International Astronautical Congress IAC-2012. October 15, 2012, Naples, Italy, IAC-12,B3,7,9,x15451. Available at: https://iafastro.directory/iac/archive/browse/IAC-12/B3/7/15451/ (accessed 19.09.2018).
4. Dittmer H., Gracia O., Caporicci M., Paijmans B., Meuws D. The International Berthing Docking Mechanism (IBDM): Demonstrating full compliance to the International Docking System Standard (IDSS). Proc. of the 66th International Astronautical Congress IAC, October 1216, 2015, Jerusalem, Israel, Paper ID: 30720. IAC-15,B3,7,7,x30720. Available at: https://iafastro.directory/iac/archive/browse/IAC-15/B3/7/30720/ (accessed 19.09.2018).
5. Motaghedi P., Ghofranian S. Feasibility of the SIMAC for the NASA Docking System. AIAA Space and Astronautics forum and exposition (SPACE 2014), 14 July, 2014. P. 18. Available at: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20140009916.pdf (accessed 19.09.2018).
6. Ghofranian S., Chuang L-P., Motaghedi P. The Boeing Company, Spacecraft Docking System. Patent US20150266595 A1, September 24, 2015. Available at: http://www.google.com/patents/US20150266595 (accessed 19.09.2018).
7. McFatter J., Keizer K., Rupp T. NASA Docking System Block 1: NASAs new direct electric docking system supporting ISS and future human space exploration. Proc. of the 44th Aerospace mechanism symposium, NASA Glenn Research Center, May 1618, 2018. P. 471484. Available at: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150014481.pdf (accessed 19.09.2018).
8. Gough V.E., Whitehall S.G. Universal tyre test machine. Proceedings of the FISITA Ninth International Technical Congress, May 1962. P. 117137.
9. Stewart D. A platform with six degrees of freedom. Proceedings of the Institution of Mechanical Engineers, 1965, vol. 180, part 1, no. 15, pp. 371386.
10. Patent 2657623. Rossiyskaya Federatsiya. Periferiynyy stykovochnyy mekhanizm [Peripheral docking mechanism]. Yaskevich A.V., Pavlov V.N., Chernyshev I.E. Rasskazov Ya.V., Zemtsov G.A., Karpenko A.A.; the applicant and the owner PAO RKK Energiya; application of 14.06 2018; priority of 01.06.2017.
11. Belikov E.M. Issledovanie amortizatsionnykh sistem periferiynykh stykovochnykh ustroystv kosmicheskikh apparatov [Study of damping systems of peripheral docking devices of spacecraft]. Diss. ... kand. tekhn. nauk. GKB NPO Energiya, 1977. 217 p.
12. Charters T., Enguica R., Freitas P. Detecting singularities of Stewart platforms. Mathematic in industry studies journal, 2009, vol. 1, pp. 6680.
13. Mishra A., Omkar S.N. Singularity analysis and comparative study of six degree of freedom Stewart platform as a robotic arm by heuristic algorithms and simulated annealing. International journal of engineering sciences and technology, 2011, vol. 3, no. 1, pp. 644659.
14. Serial and parallel robot manipulators kinematics, dynamics, control and optimization. Ed. by Serdar Kucu. InTech publ., 2012. 468 p.
15. Yaskevich A.V. Algoritmy opredeleniya parametrov kontaktov pri modelirovanii stykovki i prichalivaniya kosmicheskikh apparatov [Algorithms for contact parameters determination during math simulation of spacecraft docking and berthing]. Kosmicheskaya tekhnika i tekhnologii, 2018, no. 3(22), pp. 90102.
16. Hoffmann G. Distance between line segment. Available at: http://docs-hoffmann.de/xsegdist03072004.pdf (accessed 19.09.2018).
17. MathCAD 15.0 M010 Manual. Parametric Technology Corporation and/or its subsidiary companies. 2011. 186 p.
18. Maxima Manual. Available at: http://maxima.sourceforge.net/docs/manual/maxima.pdf (accessed 19.09.2018).

 

05.07.05 FLYING VEHICLES THERMAL, ELECTRIC PROPULSION ENGINES AND POWER GENERATING SYSTEMS

Sokolov B.A., Tupitsyn N.N.
A study into the feasibility of using the oxygen-hydrocarbon engine 11D58M as a basis for development of a high-performance multifunctional gas-generatorless rocket engine with oxygen cooling

The paper presents results of engineering studies and research and development efforts at RSC Energia to analyze and prove the feasibility of using the mass-produced oxygen-hydrocarbon engine 11D58M with 8.5 ton-force thrust as a basis for development of a high-performance multifunctional rocket engine with oxygen cooling and 5 ton-force thrust, which is optimal for upper stages (US), embodying a system that does not include a gas generator.
The multi-functionality of the engine implies including in it additional units supporting some functions that are important for US, such as feeding propellant from US tanks to the engine after flying in zero gravity, autonomous control of the engine automatic equipment to support its firing, shutdown, adjustments during burn and emergency protection in case of off-nominal operation, as well as generating torques for controlling the US attitude and stabilizing it during coasting, etc.
Replacing conventional engine chamber cooling that uses high-boiling hydrocarbon fuel with the innovative oxygen cooling makes it possible to get rid of the internal film cooling circuits and eliminate their attendant losses of fuel, while the use of the oxygen gasified in the cooling circuit of the chamber to drive the turbo pump assembly permits to design an engine that does not have a gas generator.

Key words: Multifunctional rocket engine, oxygen cooling, gas-generatorless design, upper stage.

Reference

1. Aliev V.G., Legostaev V.P., Lopota V.A. Sozdanie i pyatnadtsatiletniy opyt ekspluatatsii raketno-kosmicheskoy sistemy Morskoy start [Development and fifteen-year operating experience of sea Launch rocket and space system]. Kosmicheskaya tekhnika i tekhnologii, 2014, no. 2(5), pp. 313.
2. Averin I.N., Egorov A.M., Tupitsyn N.N. Osobennosti postroeniya, eksperimental'noy otrabotki i ekspluatatsii dvigatel'noy ustanovki razgonnogo bloka DM-SL kompleksa Morskoy start i puti ee dal'neyshego sovershenstvovaniya [Special features of architecture, developmental testing and operation of the propulsion system for the upper stage block DM-SL used in the Sea Launch Complex and avenues to its further improvement]. Kosmicheskaya tekhnika i tekhnologii, 2014, no. 2(5), pp. 6273.
3. Vachnadze V.D., Ovechko-Filippov E.V., Smolentsev A.A., Sokolov B.A. Razrabotka, etapy modernizatsii i itogi pyatidesyatiletney ekspluatatsii pervogo otechestvennogo zhidkostnogo raketnogo dvigatelya zamknutoy skhemy [Development, upgrade phases and results of fifty years of operation of our countrys first closed-loop liquid rocket engine]. Kosmicheskaya tekhnika i tekhnologii, 2015, no. 2(9), pp. 8290.
4. Eksperimental'nye raboty s tsel'yu issledovaniya vozmozhnostey ispol'zovaniya zhidkogo kisloroda dlya okhlazhdeniya kamery sgoraniya ZHRD (19591960 gg.). In: Zhidkostnye raketnye dvigateli, sozdannye OKB-1TSKBEMNPO Energiya RKK Energiya im. S.P. Koroleva (19572009) [Experimental work to investigate the capabilities of using liquid oxygen to cool the LRE combustion chamber (19591960). In: Liquid rocket engines developed at OKB-1TsKBEM-NPO Energia S.P. Korolev RSC Energia (19572009)]. Ed. by B.A. Sokolov. Raketno-kosmicheskaya tekhnika. Trudy. Ser. XII. Korolev, RKK Energiya publ., 2009, issue 12, pp. 9899.
5. Gorokhov V.D., Katkov R.E., Kozelkov V.P., Sokolov B.A., Tupitsyn N.N. Povyshenie energeticheskikh kharakteristik i nadezhnosti kislorodno-uglevodorodnykh marshevykh ZHRD za schet ispol'zovaniya novykh skhem okhlazhdeniya i podachi komponentov topliva [Increase in energetic characteristics and reliability of the main oxygen-hydro-carbon LREs through the use of new cooling and propellant supply systems]. Raketno-kosmicheskaya tekhnika. Trudy. Ser. XII. Korolev, RKK Energiya publ., 2000, issue 12, pp. 133151.
6. Artemov A.L., Dyadchenko V.Yu., Luk'yashko A.V., Novikov A.N., Popovich A.A., Rudskoy A.I., Svechkin V.P., Skoromnov V.I., Smolentsev A.A., Sokolov B.A., Solntsev V.L., Sufiyarov V.Sh., Shachnev S.Yu. Otrabotka konstruktivnykh i tekhnologicheskikh resheniy dlya izgotovleniya opytnykh obraztsov vnutrenney obolochki kamery sgoraniya mnogofunktsional'nogo zhidkostnogo raketnogo dvigatelya s ispol'zovaniem additivnykh tekhnologiy [Development of design and technology solutions for additive manufacturing of prototype inner lining for combustion chamber of multifunctional liquid-propellant rocket engine]. Kosmicheskaya tekhnika i tekhnologii, 2017, no. 1(16), pp. 5062.
7. Katkov R.E., Lozino-Lozinskaya I.G., Mosolov S.V., Skoromnov V.I., Smolentsev A.A., Sokolov B.A., Strizhenko P.P., Tupitsyn N.N. Eksperimental'naya otrabotka kamery sgoraniya mnogofunktsional'nogo zhidkostnogo raketnogo dvigatelya s kislorodnym okhlazhdeniem: rezul'taty 2009-2014 gg. [Experimental development of a multifunctional liquid rocket engine with oxygen-cooled combustion chamber: results of 20092014]. Kosmicheskaya tekhnika i tekhnologii, 2015, no. 4(11), pp. 1224.
8. Schetz J.A., Padhye A. Penetration and breakup of liquids in subsonic airstreams. AIAA Journal, 1977, vol. 15, no. 10, pp. 13851390.
9. Katkov R.E., Kiseleva O.V., Strizhenko P.P., Tupitsyn N.N. Eksperimental'nye issledovaniya struynogo nasosa-kondensatora v sostave busternogo turbonasosnogo agregata podachi zhidkogo kisloroda [Experimental studies of design options for injector pump/condenser within booster turbopump assembly for liquid oxygen delivery]. Kosmicheskaya tekhnika i tekhnologii, 2017, no. 1(16), pp. 6370.
10. Dmitrenko A.I., Ivanov A.V., Rachuk V.S. Razvitie konstruktsii turbonasosnykh agregatov dlya vodorodnykh ZhRD bezgazogeneratornoy skhemy, razrabotannykh v KBKhA [Development of the structure of turbopump assemblies for no-gas generator hydrogen LRE developed at KBKhA]. Vestnik SGAU im. S.P. Koroleva, 2010, no. 4(24), pp. 3848.
11. OST 92-0039-74. Skhemy gidravlicheskie i pnevmaticheskie. Uslovnye graficheskie i bukvennye oboznacheniya elementov [Hydraulic and pneumatic circuits. Conventional graphic and letter designations of elements]. 1994.
12. Epifanova V.I. Nizkotemperaturnye radial'nye turbodetandery [Low-temperature radial turboexpanders]. Moscow, Mashgiz publ., 1961. P. 400.
13. Mitrokhin V.T. Vybor parametrov i raschet tsentrostremitel'noy turbiny [The selection of parameters and the centripetal turbine design]. Moscow, Mashinostroenie publ., 1966. P. 200.
14. Usyunin I.P. Ustanovki, mashiny i apparaty kriogennoy tekhniki [Installations, machines and units of cryogenic equipment]. Moscow, Legkaya i pishchevaya promyshlennost' publ., 1982. Part II, 292 p.
15. Mashiny nizkotemperaturnoy tekhniki. Kriogennye mashiny i instrumenty: uch. dlya vuzov, 2-e izd., ispr. [Low-temperature machines. Cryogenic machines and instrumentations: a textbook for higher education institutions, the 2-nd ed., rev.]. Moscow, MGTU im. N.E. Baumana publ., 2015. 534 p.
16. Rozenberg G.Sh. Sudovye tsentrostremitel'nye gazovye turbiny [Ship centripetal gas turbines]. Leningrad, Sudostroenie publ., 1964. 558 p.
17. Tupitsyn N.N. Proektnaya otsenka massy osnovnykh i busternykh turbonasosnykh agregatov dvigatel'nykh ustanovok s ZhRD [Project evaluation of mass of the main and the booster turbopump assemblies of propulsion systems with LRE]. Raketno-kosmicheskaya tekhnika. Trudy. Ser. XII. Korolev, RKK Energiya publ., 2000, issue 12, pp. 152183.

 

Sokolov B.A., Shcherbina P.A., Sishko I.B., Shipovskiy A.V., Lyapin .., Konovalova A.I.
Experimental studies of iodine stationary plasma thruster

The paper demonstrates the feasibility of using iodine as propellant for thrusters with closed electron drift and its economic viability. It describes a test setup for running experiments. It provides the results of experimental studies of the stationary plasma thruster using iodine as its propellant with xenon gas-passage hollow cathode, as well as of the operational mode of the thruster where a mixture of xenon and iodine is used. During tests gas dynamic and electrical properties of the thruster were analyzed. Thermal conditions in the iodine storage and supply system were studied. Conclusions were drawn on how the test object could be improved and upgraded. The paper describes the option to use a thermionic non-flow cathode as the compensator cathode for the operation of the iodine thruster. The paper provides the results of an experimental study of the prototype non-flow compensator cathode in diode mode. Based on the results of the studies an experimental facility was built for testing a thruster with non-flow compensator cathode.

Key words: cathode, compensator cathode, thruster with closed electron drift, stationary plasma thruster, iodine.

Reference

1. Ganzburg M.F., Kropotin S.A., Murashko V.M., Popov A.N., Sevast'yanov N.N., Smolentsev A.A., Sokolov A.V., Sokolov B.A., Sukhov Yu.I. Itogi desyatiletney ekspluatatsii elektroraketnykh dvigatel'nykh ustanovok v sostave dvukh telekommunikatsionnykh kosmicheskikh apparatov Yamal-200 na geostatsionarnoy orbite [Results of ten years of operation of electric thrusters within two telecommunication spacecrafts Yamal-200 in geostationary orbit]. Kosmicheskaya tekhnika i tekhnologii, 2015, no. 4(11), pp. 2539.
2. Ostrovskiy V.G., Smolentsev A.A., Sokolov B.A., Cherashev D.V. Elektroraketnaya dvigatel'naya ustanovka na osnove dvigateley s zamknutym dreyfom elektronov na iode [The electric rocket propulsion system based on iodine thrusters with closed drift of electrons]. Kosmicheskaya tekhnika i tekhnologii, 2013, no. 2, pp. 4252.
3. Klimenko G.K., Lyapin A.A., Konovalova A.I., Shcherbina P.A., Ostrovskiy V.G., Sishko I.B. Issledovanie vozmozhnosti sozdaniya bezraskhodnogo katoda-kompensatora elektroraketnogo dvigatelya [Study of the capability of creating inconsumable compensator cathode of the electrorocket engine]. Izvestiya RAN. Energetika, 2018, no. 2, pp. 9397.
4. Tighe W.G., Chien K.-R., Goebel D.M., Longo R.T. Hollow cathode emission and ignition studies at L-3 ETI. 30th International Electric Propulsion Conference, September 1721, 2007, Florence, Italy. P. 116.
5. Branam R.D. Iodine as an alternative fuel for electric propulsion. Area Announcement, Air Force Office of Scientific Research, BAA-AFOSR-2014-0001.
6. Ostrovskiy V.G., Smolentsev A.A., Shcherbina P.A. Yod kak al'ternativnoe rabochee telo ERD [Iodine as an alternative working fluid for ERE]. Vestnik SGAU im. S.P. Koroleva, 2014, no. 5(47), part 4, pp. 131136.
7. Sokolov B.A., Ostrovskiy V.G., Shcherbina P.A. Razrabotka i issledovanie sistemy khraneniya i podachi ioda elektroraketnykh dvigatel'nykh ustanovok [Development and research of iodine storage and supply system for electric thrusters]. Kosmicheskaya tekhnika i tekhnologii, 2017, no. 4(19), pp. 5260.
8. Patent RU 2650450 S2. Rossiyskaya Federatsiya. Sistema khraneniya i podachi ioda [Iodine storage and supply system]. Ostrovskiy V.G., Shcherbina P.A.; the applicant and the owner PAO RKK Energiya; application 2016132925 of 09.08.2016, priority of 09.08.2016. Byulleten' no. 11, published 13.04.2018.
9. Shcherbina P.A. Sistema khraneniya i podachi ioda kak rabochego tela elektroraketnykh dvigatel'nykh ustanovok [System of iodine storage and supply as a working fluid for electrorocket propulsion systems]. Zhurnal nauchnykh publikatsiy aspirantov i doktorantov, 2015, no. 11, pp. 143145.

 

Bashmakov V.N., Koryakin A.I., Kropotin S.A., Popov A.N., Sevastyanov N.N., Sokolov A.V., Sokolov B.A., Sukhov Yu.I.
Methodology of development and test of the electrical rocket propulsion system for telecommunication spacecraft Yamal-200 (to the 15th anniversary of operation in space)

The article summarizes the results of a 15-year operation of the Yamal-202 telecommunication spacecraft in geostationary orbit. The review of using electrical rocket engines in spacecraft in domestic and foreign projects is made. The questions of methodology for developing and testing the electrical rocket propulsion system for the Yamal-200 spacecraft are considered including features of the RSC Energia stand base, specific features of the equipment and methodology for filling tanks with working fluid such as xenon. Special attention is paid to the preliminary joint test of the power supply and control equipment with thruster modules in order to justify the long-term operation of electrical rocket engines. In the analysis of the 15-year operation of the electrical rocket propulsion system the initial operation phase of the spacecraft is shown with the cruise mode of electrical rocket thruster modules for installation at operating points 49 and 90 EL with the corresponding operating time of all thruster modules. The final data on the operating time of thruster modules KA-201 for 10.5 and KA-202 for 15 years of operation is presented that gives significant statistics on the use of engines -70. The estimate of the remaining mass of the working fluid and the capability of further operation of the electrical rocket propulsion system is made.

Key words: geostationary orbit, electrical rocket engine, thruster module, united propulsion system, predelivery checkout tests, filling with working fluid.

Reference

1. Ageev V.P., Milevskiy S.Ya., Murashko V.M., Sevast'yanov N.N., Semenov Yu.P., Sokolov B.A., Sukhov Yu.I., Chinaev M.G. Dlitel'naya ekspluatatsiya elektroraketnykh dvigateley v sostave geostatsionarnogo informatsionnogo kosmicheskogo apparata Yamal [Long-duration operation of electrorocket engines in the Yamal geostationary information spacecraft]. Raketno-kosmicheskaya tekhnika. Trudy. Ser. XII. Korolev, RKK Energiya publ., 2003, issue 12, pp. 710.
2. Shin'kovich O. Yamal-100. 3 goda na orbite [Yamal-100. 3 years in orbit]. Novosti kosmonavtiki, 2006, vol. 12, no. 11(238), pp. 4445.
3. Zhuravin Yu. Novye Yamaly [New Yamal spacecraft]. Novosti kosmonavtiki, 2004, vol. 14, no. 1(252), pp. 1921.
4. Andronov I.M., Artsimovich L.A., Esipchuk Yu.V. et al. Razrabotka statsionarnogo plazmennogo dvigatelya (SPD) i ego ispytaniya na ISZ Meteor [Development of stationary plasma engine (SPE) and its testing in the Meteor AES]. Kosmicheskie issledovaniya, 1974, vol. 12, issue 3, pp. 451468.
5. Bober A.S., Kim V., Koroteyev A.S. et al. State of works on electrical thrusters in USSR. Paper IEPC-1991-003 in proceedings of 22nd International Electric Propulsion Conference, Viareggio, Italy, October 1417, 1991.
6. SESAT. Available at: https://www.telesputnik.ru/materials/tekhnika-i-tekhnologii/news/8-fevralyazavershayutsya-raboty-so-sputnikom-sesat/ (accessed 06.05.2019 .).
7. Delgado J.J., Baldwin J.A., Corey R.I. Space Systems Loral electric propulsion subsystem: 10 years of on-orbit operation. IEPC-2015-04/ISTS-2015-b-04.
8. Zhuravin Yu. V polete ViaSat2 i Eutelsat 172B [ViaSat2 and Eutelsat 172B in flight]. Novosti kosmonavtiki, 2017, no. 8(415), pp. 2831.
9. Lisov N. SES-12: Krupneyshiy iz elektrosatov [SES-12: The largest of electrosats]. Novosti kosmonavtiki, 2018, no. 8(427), pp. 3940.
10. Tayurskiy G.I., Murashko V.M, Borisenko A.A., Popov A.N., Kropotin S.A., Ostrovskiy V.G., Sukhov Yu.I., Ulanova E.N. Analiz raboty elektroraketnykh dvigateley v sostave telekommunikatsionnogo kosmicheskogo apparata Yamal-200 [Operation analysis of electrorocket engines in the Yamal-200 telecommunication spacecraft]. Izvestiya Akademii nauk. Energetika, 2009, no. 3, pp. 124130.
11. Borisenko A.A., Kanishcheva M.A., Murashko V.M., Obukhov E.V., Popov A.N., Sevast'yanov N.N., Sokolov A.V., Sukhov Yu.I. Analiz raboty elektroraketnykh dvigateley v sostave dvukh telekommunikatsionnykh kosmicheskikh apparatov Yamal-200 [Operation analysis of electrorocket engines in two Yamal-200 telecommunication spacecraft]. Raketnaya tekhnika i kosmonavtika, 2013, no. 1(70), pp. 5157.
12. Ganzburg M.F., Kropotin S.A., Murashko V.M., Popov A.N., Sevast'yanov N.N., Smolentsev A.A., Sokolov A.V., Sokolov B.A., Sukhov Yu.I. Itogi desyatiletney ekspluatatsii elektroraketnykh dvigatel'nykh ustanovok v sostave dvukh telekommunikatsionnykh kosmicheskikh apparatov Yamal-200 na geostatsionarnoy orbite [Results of ten years of operation of electric thrusters within two telecommunication spacecrafts Yamal-200 in geostationary orbit]. Kosmicheskaya tekhnika i tekhnologii, 2015, no. 4(11), pp. 2539.
13. Elektroizolyatsionnye masla [Electrical insulating oils]. Moscow, Gostoptekhizdat publ., 1963. 271 p.
14. Morkovin A.V., Plotnikov A.D., Borisenko T.B. Teplonositeli dlya teplovykh trub i naruzhnykh gidravlicheskikh konturov sistem termoregulirovaniya avtomaticheskikh i pilotiruemykh kosmicheskikh apparatov [Heat transfer medium for heat pipes and external hydraulic circuits of thermal control systems of unmanned and manned spacecraft]. Kosmicheskaya tekhnika i tekhnologii, 2015, no. 3(10), pp. 8999.
15. Rid R., Prausnits Dzh., Shervud T. Svoystva gazov i zhidkostey [Properties of gases and liquids]. Leningrad, Khimiya publ., 1982. Pp. 3135, 534.

 

5.13.01 SYSTEMS ANALYSIS, CONTROL AND DATA PROCESSING

Babishin V.D., Dementyev D.Yu., Martynov V.S., Mikhaylov M.A., Nekrasov V.V., Sobolev D.Yu., Sosedko K.A.
Features of digital control of flywheel engine, jsc corporation vniiem for high-dynamic spacecraft

The development of radiation-resistant microcontroller technology opened new possibilities for controlling the flywheel engine and, consequently, the whole spacecraft. The lack of import-independent flywheel engine having the advanced capabilities as compared with domestic and foreign analogs made it necessary to develop a new generation of flywheel engines with digital microcontroller-based control at JSC Corporation VNIIEM. Such a flywheel engine is being developed as a fast-acting actuator of the orientation and stabilization system of a high-dynamic spacecraft (the maximum control moment of the new flywheel engine is 1 N·m).
Such features of creating digital microcontroller-based control of a new flywheel engine as organizing the flywheel engine rotor rate feedback, consideration of the basic control modes of the flywheel engine and options for reaching the required rotor rate of the flywheel engine, as well as self-diagnostics not only controlling but automatically updating the diagnosed parameters of the flywheel engine are given in this article.

Key words: flywheel engine, digital control, microcontroller-based control, JSC Corporation VNIIEM.

Reference

1. Zapusk: Kanopus-V i Belorusskiy KA, launch Kanopus-V [Launch: Kanopus-V and Belorussian spacecraft, Kanopus-V launch]. Available at: https://youtu.be/10rTez2CLFI (accessed 18.01.2018).
2. OAO Rossiyskie kosmicheskie sistemy. Kosmicheskiy apparat tipa Kanopus-V [OJSC Russian Space Systems. The Kanopus-V type spacecraft]. Available at: http://russianspacesystems.ru/bussines/dzz/orbitalnaya-gruppirovka-ka-dzz/kanopus-v/ (accessed 18.01.2018).
3. Roskosmos. Kosmicheskiy kompleks Kanopus-V [Roscosmos. Kanopus-V Space Complex]. Available at: https://www.roscosmos.ru/24985/ (accessed 13.03.2019).
4. SSTL delivers on Russian KANOPUS missions//SSTL, 06 Mar 2009. Available at: https://www.sstl.co.uk/space-portfolio/launched-missions (accessed 13.03.2019).
5. JSC NPO Polyus. Available at: http://polus.tomsknet.ru (accessed 18.01.2018).
6. JSC VNIIEM Corporation. Available at: http://www.vniiem.ru (accessed 18.01.2018).
7. Zhuravlev V.YA., Kuz'min V.N., Mikhaylov E.M., Rudobaba E.P., Stoma S.A. Elektrodvigatel'-makhovik postoyannogo toka [DC flywheel-motor]. Moscow, Trudy VNIIEM, 1985, vol. 78, pp. 6774.
8. GOST R 52070-2003. Bus serial interface of electronic modules system. General requirements. Moscow, IPK Izdatel'stvo standartov publ., 2003.
9. Anuchin A.S. Sistemy upravleniya elektroprivodami [Electric drive control systems]. Moscow, Izdatel'skiy dom MEI publ., 2015. 373 p.
10. Kalachev Yu.N. Vektornoe regulirovanie (zametki praktika) [Vector control (practician notes)]. Moscow, Efo publ., 2013, 66 p.
11. Nekrasov V.V., Shchetinin M.Yu. Unifitsirovannyy modul' upravleniya SOSB malykh KA na osnove mikroEVM [Unified SAOS control module of small SC based on microcomputers]. Moscow, Trudy NPP VNIIEM publ., 2008. P. 4650.
12. Babishin V.D., Nekrasov V.V., Sosedko K.A. Postanovka nauchnoy zadachi po razrabotke novogo dvigatelya-makhovika dlya upravleniya malymi kosmicheskimi apparatami [Setting a scientific task to develop a new flywheel engine to control small spacecraft]. Trudy MKEEE-2018, 2428 September 2018, Alushta. P. 149151.

 

Belonogov O.B.
Techniques for iterative static analysis of a quad-orifice electrohydraulic steering actuator of rocket stages

The paper contains results of development and study of iterative techniques for static analysis of quad-orifice electrohydraulic steering engine, namely, techniques for calculating its static characteristics (force and velocity characteristics) taking into account parameters of local hydraulic resistance parameters, making it possible to do analysis at various values of power supply voltage and temperature. The proposed techniques are based on solving systems of non-linear algebraic and transcendental equations of math models of the steering actuator describing its static operational modes. Taken as a basis for development of techniques for static analysis of the steering actuator are methods of integrated simulation of physical properties of working fluids of steering actuators and hydraulic drives, iterative methods for calculating parameters of working fluids flow in connecting lines, channels, flow-through elements and valves, results of studies of operating processes for steering actuator constituent elements, as well as a modification of the Seidel method for solving a system of non-linear algebraic and transcendental equations. The paper provides the results of testing the developed static analysis iterative techniques of such a steering actuator.

Key words: static analysis, electrohydraulic steering actuator, non-linear algebraic and transcendent equations.

Reference

1. Belonogov O.B. Iteratsionnye metody staticheskogo analiza dvukhdrossel'noy elektrogidravlicheskoy rulevoy mashiny raketnykh blokov [Techniques for iterative static analysis of a double-orifice electrohydraulic steering actuator of rocket stages]. Kosmicheskaya tekhnika i tekhnologii, 2018, no. 2(21), pp. 93105.
2. Kudryavtsev V.V., Stepan G.A., Shutenko V.I., Chertok B.E. The rocket steering actuators. IAC94 International Aerospace congress. Theory, Applications, Technologies. Abstracts. August 1519, 1994, Moscow, Russia.
3. Belonogov O.B. Obobshchennaya matematicheskaya model' elektrodvigatelya postoyannogo toka i metod identifikatsii ee parametrov [The generalized mathematical model of dc motor and a method for identifying its parameters]. Izvestiya RAN. Energetika, 2013, no. 1, pp. 7581.
4. Belonogov O.B. Metody rascheta staticheskikh kharakteristik dvukhdrossel'nykh i chetyrekhdrossel'nykh elektrogidravlicheskikh usiliteley [Methods for calculating static characteristics of two-throttle and four-throttle electrohydraulic amplifiers]. Raketno-kosmicheskaya tekhnika. Trudy. Ser. XII. Korolev, RKK Energiya publ., 2005, issue 1, pp. 5699.
5. Belonogov O.B. Eksperimental'nye issledovaniya i identifikatsiya uglov istecheniya potokov v drossel'nykh oknakh zolotnikovykh gidroraspredeliteley rulevykh mashin raket [Experimental studies and identification of outflow angles in the throttle windows of the spool hydraulic valves for steering engines of rockets]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie, 2015, no. 1, pp. 3548.
6. Belonogov O.B. Eksperimental'nye issledovaniya i metod identifikatsii bezrazmernykh parametrov techeniya potokov zhidkosti v drossel'nykh oknakh zolotnikovykh gidroraspredeliteley [Experimental studies and the method for identifying dimensionless parameters of the fluid flow in the throttle windows of spool hydraulic valves]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie, 2015, no. 3, pp. 4357.
7. Belonogov O.B. Eksperimental'nye issledovaniya istecheniya i bezrazmernykh parametrov techeniya potokov zhidkosti v drossel'nykh oknakh zolotnikovykh gidroraspredeliteley s vrashchayushchimisya gil'zami [Experimental studies of outflow and dimensionless parameters of the fluid flow in the throttle windows of spool valves with rotating sleeves]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie, 2016, no. 5, pp. 423.
8. Belonogov O.B. Metod identifikatsii bezrazmernykh parametrov techeniya potokov zhidkosti v sharikovykh predokhranitel'nykh i perelivnykh klapanakh rulevykh mashin raket i dvigatel'nykh ustanovok kosmicheskikh apparatov [Method for identifying dimensionless parameters of the fluid flow in ball safety and flow spill valves of steering engines of rockets and propulsion systems of spacecraft]. Vestnik NPO im. S.A. Lavochkina, 2015, no. 1, pp. 6670.
9. Belonogov O.B. Metody rascheta staticheskikh kharakteristik avtonomnykh odnokaskadnykh rulevykh mashin s chetyrekhdrossel'nym elektrogidravlicheskim usilitelem s otritsatel'nym perekrytiem [Methods for calculating static characteristics of autonomous single-spool steering engines with a four-throttle electrohydraulic amplifier with underlap]. Raketno-kosmicheskaya tekhnika. Trudy. Ser. XII. Korolev, RKK Energiya publ., 1997, issue 1, pp. 2952.

 

DISCUSSION

Sizentsev G.A., Sinyavskiy V.V., Sokolov B.A.
A concept of an energy-and-climate control facility in space to counter global overheating

Main results of the fifth Evaluation Report of the Climate Change Intergovernmental Experts Team became the foundation for the climate agreement of the UN Paris conference on climate (December 2015), by identifying the ways of countering a global environmental disaster on Earth. The conference reaffirmed the need to limit release of green house gases into the Earth atmosphere. However, meeting the goals set in the Evaluation Report is in doubt because of the existing political and economic differences among nations, which is evidenced by the level of commitments to limit emissions made by the heads of the countries that took part in the conference.
This paper proposes to consider using untapped potential of spaceflight towards solving the global warming problem by contributing the UN Adaptation Fund through sale of rare materials mined on the Moon and setting up a reserve space energy-and-climate control facility. This would allow, on the one hand, to increase financial aid to developing countries to help them combat climate change consequences and lend support to the lunar industrial infrastructure, as well as to the development of a space system for thermal control, on the other hand, to stabilize as far as possible the geographic coordinates of climatic zones, the level of the ocean, etc., reducing losses to wildlife, and, among other things, to the Civilization.

Key words: global climate, renewable energy sources, lunar rare-earth materials, space technology, lunar industrial infrastructure.

Reference

1. Koroteev A.S., Semenov Yu.P., Semenov V.F., Sizentsev G.A., Sinyavskiy V.V., Sokolov B.A., Sotnikov B.I. Kosmicheskaya tekhnika i kosmonavtika v reshenii ekologicheskikh problem mirovoy energetiki XXI veka [Space technology and cosmonautics in solving ecological problems of world power engineering of the XXI century]. Izvestiya RAN. Energetika, 2006, no. 1, pp. 142155.
2. Turn down the heat: why a 4C warmer world must be avoided. Available at: download (accessed 28.07.2015).
3. Budyko M.I. Klimat v proshlom i budushchem [Climate in the past and in the future]. Leningrad, Gidrometeoizdat publ., 1980. 352 p.
4. Kokorin A.O. Izmenenie klimata: obzor Pyatogo otsenochnogo doklada [Climate change: review of the Fifth assessment report]. Moscow, Vsemirnyy fond dikoy prirody publ., 2014. 80 p. Available at: http://www.wwf.ru/resources/publ/book/916 (accessed 28.07.2015).
5. Izmenenie klimata, 2013 g. Fizicheskaya nauchnaya osnova. Rezyume dlya politikov. Vklad rabochey gruppy 1 v pyatyy doklad ob otsenke mezhpravitel'stvennoy gruppy ekspertov po izmeneniyu klimata [Climate change, 2013. Physical scientific basis. Summary for politicians. Contribution of working group 1 to the fifth assessment report of Inter-governmental Panel of Climate Change]. Available at: https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_SPM_brochure_ru.pdf (accessed 28.07.2015).
6. Press-reliz MGEIK 31 marta 2014 g. Doklad MGEIK: Izmenyayushchiysya klimat porozhdaet shiroko rasprostranennye riski, odnako sushchestvuyut vozmozhnosti dlya effektivnykh otvetnykh mer [IPCC Press release of March 31, 2014. IPCC Report: a changing climate results in wide-spread risks, however there are capabilities for effective retaliatory measures]. Available at: download (accessed 28.07.2015).
7. Obshchiy informatsionnyy paket. 5-y otsenochnyy otchet MGEIK, RG-3 [General information packet. The fifth assessment report of Inter-governmental Panel on Climate Change (IPCC), WG-3]. Available at: http://infoclimate.org/wp-content/uploads/2014/04/rabochaya-grupa-3.pdf (accessed 28.07.2015).
8. Delukki M., Dzheykobson M. Put' k nadezhnoy energetike v 2030 godu [The way to reliable power engineering in 2030]. V mire nauki, 2010, no. 01, pp. 4451.
9. Kokorin A.O. Parizhskaya konferentsiya po klimatu: uspekh ili proval [The Paris Climate Conference: success or failure]. Nezavisimaya gazeta, 12.01.2016. Available at: http://www.ng.ru/ng_energiya/2016-01-12/9_climat.html (accessed 28.11.2018).
10. Klimat dlya chaynikov: zadachi i trudnosti parizhskoy konferentsii OON SOR 21 [Climate for dummies: tasks and problems of Paris Conference the UN SOR 21]. Available at: ru.rfi.fr/frantsiya/20151130-sor21-zadachi-i-trudnosti-parizhskoi-konferentsii-oon-po-klimatu (accessed 21.08.2018).
11. TASS 25.11.2017 g. Adaptatsionnyy fond stanet finansovym instrumentom Parizhskogo klimaticheskogo soglasheniya [TASS 25.11.2017 . The Adaptation Fund will be a financial tool for the Paris Climate Agreement]. Available at: http://tass.ru/plus-one/4753805 (accessed 28.11.2018).
12. Luna shag k tekhnologiyam osvoeniya Solnechnoy sistemy [The Moon a step to technologies of the Solar system exploration]. Sci. ed. by V.P. Legostaev i V.A. Lopota. Moscow, RKK Energiya publ., 2011. 584 p.
13. Shevchenko V.V. Utilizatsiya privnesennogo na Lunu asteroidnogo veshchestva kak bolee ekonomichnyy put' k polucheniyu kosmicheskikh resursov vysokoy tsennosti [Utilization of the asteroid subject on the Moon a more economic way to obtain cosmic resources of high value]. Kosmicheskaya tekhnika i tekhnologii, 2018, no. 1(20), pp. 522.
14. Sizentsev G.A. Kosmicheskiy kompleks dlya resheniya energoklimaticheskikh problem na Zemle [A space system to address energy and climate problems on Earth]. Kosmicheskaya tekhnika i tekhnologii, 2013, no. 3, pp. 8295.
15. Belyaev L.S., Lagerev A.V., Posekalin V.V. etc. Energetika XXI veka: Usloviya razvitiya, tekhnologii, prognozy [Power engineering of the XXI century: Development conditions, technologies forecasts]. Editor-in-chief N.I. Voropay. Novosibirsk, Nauka publ., 2004. 386 p.
16. Sizentsev G.A., Sotnikov B.I. Kontseptsiya kosmicheskoy sistemy regulirovaniya termicheskogo rezhima zemnoy atmosfery [Concept of the space control system of the earth atmosphere thermal mode]. Izvestiya RAN. Energetika, 2009, no. 2, pp. 91100.
17. Zelenyy L.M. Kosmicheskie issledovaniya neobkhodimy dlya zhizni na Zemle [Space research is necessary for life on the Earth]. Ekologiya i zhizn', 2011, no. 9(118), pp. 4855.