English

Abstracts

 1 (24)  january-march 2019

The Space Engineering and Technology magazine
 1 (24), 2019

Contents

FLYING VEHICLES STRENGTH AND THERMAL ENVIRONMENTS 05.07.03.

Dyadkin A.A., Rybak S.P., Trashkov G.A., Garbaruk A.V., Strelets M.Kh., Shur M.L., Drozdov S.M., Stolyarov E.P.
The design and experimental studies of pressure pulsations on the surface of the ascent unit with manned transport spacecraft in the launch phase

The results of the design and experimental study of the turbulent flow over the re-entry cone with manned transport spacecraft and the emergency rescue system in the launch phase are presented. The main task of these studies is to determine the amplitude-frequency characteristics of pressure pulsations on the surface of the return vehicle. A combined two-stage scale-resolving approach to turbulence representation developed for this purpose is described in some detail, and the results of its verification are presented based on the comparison of the predicted unsteady surface pressure with measurements of pressure pulsations made for the 20 times reduced model configuration in the wind tunnel of TsAGI -128. The analysis of the results of simulations of the full-scale configuration at subsonic, transonic and supersonic speeds of flight suggests that in the launch phase the re-entry cone surface experiences strong dynamic loads (at Mach number = 1.5 intensity of the surface pressure pulsations reaches 175 dB). It is also shown that a significant (up to 7 dB) contribution to these loads is due to turbulent vortex structures populating wakes of nozzles of the emergency rescue unit.

Key words: manned transport spacecraft, re-entry cone, surface pressure pulsations, two-stage scale-resolving approach to turbulence modeling, wind tunnel, unsteady pressure measurements.

Reference

1. Garbaruk A.V., Strelets M.Kh., Travin A.K., Shur M.L. Sovremennye podkhody k modelirovaniyu turbulentnosti [Up-to-date approaches to simulating turbulence]. Saint-Petersburg, Politekhnicheskiy universitet publ., 2016. 233 p.
2. Menter F.R. Zonal two-equation k-ω turbulence models for aerodynamic flows. AIAA Paper, AIAA-1993-2906, 1993. 21 p.
3. Shur M.L., Spalart P.R., Strelets M.K., Travin A.K. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat and Fluid Flow, 2008, vol. 29, pp. 16381649.
4. Spalart P.R., Jou W., Strelets M., Allmaras S. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: Liu C., Liu Z. (eds.). Advances in DNS/LES. Greyden Press, Columbus, OH, 1997. P. 137147.
5. Strelets M.K. Detached eddy simulation of massively separated flows. AIAA Paper, AIAA-2001-0879, 2001. 18 p.
6. Shur M.L., Spalart P.R., Strelets M.K., Travin A.K. Synthetic turbulence generators for RANS-LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems. Flow, Turbulence and Combustion, 2014, vol. 93, pp. 6392.
7. Shur M., Strelets M., Travin A. High-order implicit multi-block Navier-Stokes code: ten-years experience of application to RANS/DES/LES/DNS of turbulent flows. Invited lecture. 7th Symposium on Overset Composite Grids and Solution Technology, October 57, 2004, Huntington Beach, USA. Available at: http://cfd.spbstu.ru/agarbaruk/c/document_library/DLFE-42505.pdf (accessed 11.12.2018).
8. Roe P.L. Approximate Rieman solvers, parameter vectors and difference schemes. Journal of Computational Physics, 1981, vol. 46, pp. 357378.
9. Spalart P.R., Allmaras S.R. A one-equation turbulence model for aerodynamic flows. AIAA Paper, AIAA-1992-0439, 1992. 22 p.
10. Bendat Dzh., Pirsol A. Prikladnoy analiz sluchaynykh dannykh [Applied analysis of random data]. Moscow, Mir publ., 1989. 544 p.

 

Zimin V.P., Efimov K.N., Kolychev A.V., Kernozhitsky V.A., Ovchinnikov V.A., Yakimov A.S.
Simulation of thermionic thermal shielding during convective heating of a composite shell

There is currently under way an effort to develop high-speed flying vehicles capable of maneuvering in dense atmosphere. These include descent vehicles of advanced re-usable spacecraft and recoverable launch vehicle stages. These high-speed flying vehicles are exposed to high dynamic and thermal loads, which may result in their breakup and changes in their aerodynamic properties. Therefore, it is critical to provide thermal shielding for their structural elements. A promising solution for solving this problem is to use thermionic technology the electronic cooling resulting from thermal emission of electrons from the emitter surface. This technology makes it possible to convert thermal energy generated in convective heating directly into electric energy. To find a high-precision solution of this scientific and engineering problem, it is necessary to develop mathematical and physical simulations of such systems taking into account the intricate manner in which the high-enthalpy flows interact with thermal shielding material, where structural elements of the flying vehicle itself take part to a large extent in the process of their cooling. The application of such an approach will make it possible to simulate thermionic thermal shielding systems of high-speed flying vehicles under conditions representing actual loads along their trajectories.

Key words: thermionic thermal shielding, simulation, heat exchange, thermionic converter, emitter, collector, cooler.

Reference

1. Polezhaev Yu.V., Yurevich F.B. Teplovaya zashita [Thermal protection]. Moscow, Energiya publ., 1976. 392 p.
2. Grishin A.M., Golovanov A.N., Zinchenko V.I., Efimov K.N., Yakimov A.S. Matematicheskoe i fizicheskoe modelirovanie teplovoy zashchity [Mathematical and physical modeling of thermal protection]. Tomsk, Tomsk University publ., 2011. 358 p.
3. Zinchenko V.I., Efimov K.N., Yakimov A.S. Raschet kharakteristik sopryazhennogo teplomassoobmena pri prostranstvennom obtekanii zatuplennogo tela c ispolzovaniem sistemy kombinirovannoi teplovoy zashchity [Calculation of the characteristics of the conjugate heat-mass exchange in the case of the spatial flow around a blunted body using a system of combined thermal protection]. Teplofizika vysokikh temperatur, 2011, no. 1, pp. 81-91.
4. Patent RU 20404087 C1. Rossiyskaya Federatsiya. Termoemissionnyy sposob teplovoy zashchity chastey letatel'nogo apparata pri ikh aerodinamicheskom nagreve [Thermo-emission method of protecting the parts of an aircraft with their aerodynamic heating]. Kernozhitskiy V.A., Kolychev A.V., Okhochinskiy D.M.; the applicant and the patent owner BGTU VOENMEKH im. D.F. Ustinova; application 2009140802/11; priority of 03.11.2009. Byulleten' izobreteniy, 2010, no. 32, 7 p.
5. Kolychev A.V. Aktivnaya teplovaya zashita elementov konstruktsii vysokoskorostnogo letatelnogo apparata na novych phizicheskich printsipach pri aerodinamicheskom nagreve [Active thermal protection of structural elements of a high-speed aircraft on new physical principles under aerodynamic heating]. Elektronnyy zhurnal Trudy MAI, 2012, issue 51, pp. 1-18.
6. Alkandry H., Hanquist K.M., Boyd I.D. Conceptual analysis of electron transpiration cooling for the leading edges of hypersonic vehicles. AIAA AVIATION 2014 11th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, 2014.
7. Khrapko V.Yu. The concept of the combined thermal protection system for leading edges of hypersonic vehicles with use of thermionic emission. Conference Paper in XIII International Youth Scientific and Practical Conference Future of Atomic Energy AtomFuture 2017. KnE Engineering Volume (KnowledgeE), 2017, pp. 395401. DOI 10.18502/48.
8. Hanquist K.M. Modeling of electron transpiration cooling for leading edges of hypersonic vehicles. A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Aerospace Engineering) in The University of Michigan, 2017. 213 p.
9. Ushakov B.A., Nikitin V.D., Emelyanov I.Ya. Osnovi termoemissionnogo preobrazovaniya energii [Fundamentals of thermionic energy conversion]. Moscow, Atomizdat publ., 1974. 288 p.
10. Yarygin V.I. Fizicheskie osnovy termoemissionnogo preobrazovaniya energii [Physical basis of thermionic energy conversion]. Obninsk, IATE publ., 2006. Part 1, 104 p.
11. Sinyavsky V.V. Metodi i sredstva eksperimentalnych issledovanii I reaktornych ispytanii termoemissionnych electrogeneriruyushich sborok [Methods and means of experimental research and reactor tests of thermionic power generating assemblies]. Moscow, Energoatomizdat publ., 2000. 375 p.
12. Brovalsky Yu.A., Rozhkova N.M., Sinyavsky V.V., Yuditsky V.D. Obobshchenny raschet volt-ampernykh kharakteristik i poley temperatury termoemissionnykh preobrazovateley na osnove dannykh ispytaniy izotermicheskogo TEP [Generalized calculation of current-voltage characteristics and temperature fields of thermionic converters on the basis of test data of an isothermal TEC]. Thermal emission converters of energy. Moscow, VNIIT publ., 1969. Pp. 281-285.
13. Zarichnyak Yu.P., Lisnenko T.A., Basov A.E. Teplofizicheskie svoystva splavov tverdykh rastvorov volfram-molibden [Thermophysical properties of alloys of solid solutions of tungsten-molybdenum]. Teplofizika vysokikh temperatur, 1977, no. 4, pp. 918-920.
14. Babushkin Yu.V., Zimin V.P. Metody rascheta volt-ampernykh kharakteristik termoemissionnykh electrogeneriruyushchikh sborok [Methods for calculating the volt-ampere characteristics of thermoemission electro-generating assemblies]. News Tomsk Polytechnic University, 2006, vol. 309, no. 2, pp. 135-139.
15. Samarsky A.A. Vvedenie v chislennye metody. Uch. pos. dlya vuzov [Introduction to numerical methods. Textbook for universities]. Moscow, Lan publ., 2009. 288 p.
16. Zemlyansky B.A., Stepanov G.I. O raschete teploobmena pri prostranstvennom obtecanii tonkich zatuplennych konusov giperzvukovym potokom vozdukha [On the calculation of heat transfer in the case of a hypersonic air flow around a thin blunted cone]. Izvestiya AS SSSR. Mekhanika zhidkosti i gasa, 1981, no. 5, pp. 173-177.
17. GOST 440181. Standart atmosphere. Parameters. oscow, Izd-vo standartov publ., 1981. 182 p.
18. Lunev V.V. Giperzvukovaya aerodinamika [Hypersonic aerodynamics]. Moscow, Mashinostroenie publ., 1975. 328 p.
19. .. . . .: , 1968. 484 . Chirkin V.S. Teplofizicheskie svoystva materialov yadernoy tekhniki. Spravochnik [Thermophysical properties of nuclear engineering materials. Directory]. Moscow, Atomizdat publ., 1968. 484 p.

 

FLYING VEHICLES THERMAL, ELECTRIC PROPULSION ENGINES AND POWER GENERATING SYSTEMS 05.07.05.

Nikolaev V.D., Zernov A.S.
Safety assurance of chemical self-contained power supplies for hardware and onboard equipment of the ISS Russian Segment

Chemical self-contained power supplies (SPS) are widely used in the replaceable equipment and experimental hardware aboard the International Space Station (ISS). In the event of a failure aboard the ISS or transport vehicle SPS poses a serious hazard to the crew as chemical elements. Therefore, special measures are taken, and equipment/devices are used to prevent the SPS seal failure and electrolyte ingress into the atmosphere of the ISS pressurized compartments, on the crewmembers and hardware. The article describes the types of SPS used on the ISS Russian Segment, and the requirements placed on new types of SPS. The SPS qualification, verification and preflight test procedures are presented. The results of typical SPS qualification tests are provided.

Key words: International Space Station (ISS), Russian Segment, US On-Orbit Segment, self-contained chemical power supply, safety assurance, qualification test, pre-flight test.

Reference

1. Varlamov V.R. Sovremennye istochniki pitaniya [Advanced power sources]. Moscow, DMK Press publ., 2001. 224 p.
2. Promyshlennoe primenenie akkumulyatornykh batarey [Industrial application of storage batteries]. Ed. by M. Brussili, Dzh. Pristoyya. Moscow, Tekhnosfera publ., 2011. 784 p. 3. RSA, NASA, ESF, JAXA Multilateral category 1 constraints. Flight safety certificate.
4. Taganova A.A. Germetichnye khimicheskie istochniki toka. Elementy i akkumulyatory, oborudovanie dlya ispytaniy i ekspluatatsii [Pressure-tight chemical current sources. Cells and storage batteries, test and operating equipment]. Saint-Petersburg, Khimizdat publ., 2005. 262 p.
5. Memorandum of understanding between the National Aeronautics and Space Administration of the United States of America and the Russian Space Agency concerning cooperation on the civil International Space Station. Available at: https://www.nasa.gov/mission_pages/station/structure/elements/nasa_rsa.html (accessed 25.07.2018).
6. Derechin A.G., Zharova L.N., Sinyavskiy V.V., Solntsev V.L., Sorokin I.V. Mezhdunarodnoe sotrudnichestvo v sfere pilotiruemykh poletov. Chast' 2. Sozdanie i ekspluatatsiya Mezhdunarodnoy kosmicheskoy stantsii [International cooperation in the sphere of manned flights. Part 2. Devolopment and operation of the International Space Station]. Kosmicheskaya tekhnika i tekhnologii, 2017, no. 2(17), pp. 528.
7. Gini A. Safety of Lithium Battery. Space Safety Magazine, IAASS, July 2011, no. 0 (Pilot issue), p. 1011.

 

Bershadskiy V.A., Sokolov B.A., Tumanin E.N.
Results of study of dissolution intensity of non-condensable gas in liquid propellant components of propulsion systems

The importance of determining the dissolution intensity of non-condensable gas in the propellant components used in rocket propulsion systems due to the effect of the gas content in the propellant on the liquid rocket engine performance is shown. The necessity of experimental studies of the dissolution intensity of gaseous helium in liquid hydrogen on a large-scale experimental facility when creating an oxygen-hydrogen propulsion system of the Energia launch vehicle is substantiated. Features of making studies with substantiation of the process model and generalization of experimental data are presented. The dependence of the mass-transfer coefficient in dimensionless form for wide ranges of the similarity criteria changes characteristic of high-boiling and cryogenic liquids is obtained.
The comparative analysis and advantages of the obtained results, as well as brief information about their practical use are given. The results of the study of helium solubility in liquid cryogenic propellant components hydrogen and oxygen can be used when developing rocket stages with cryogenic propellant components for a superheavy class launch vehicle.

Key words: propellant-feed system, gas dissolution intensity, propellant components, dissolved gas concentration, gas saturation of propellant, mass-transfer coefficient, dimensionless criteria, a superheavy class launch vehicle.

Reference

1. Petrov V.I., Chabaevskiy V.F. Kavitatsiya v vysokooborotnykh lopastnykh nasosakh [Cavitation in high-speed vane pumps]. Moscow, Mashinostroenie publ., 1982. 192 p. 2. Bershadskiy V.A., Kolomentsev F.I. Osnovy tekhnologii stendovykh ispytaniy dvigatel'nykh ustanovok zhidkostnykh raket. Avtonomnaya otrabotka [Manufacturing science for stand tests of liquid rocket propulsion systems. Autonomous test]. Moscow, MAI publ., 2014. 214 p.
3. Esin V.I., Morozov I.I. Predvaritel'nyy nadduv toplivnykh bakov pri podache gaza cherez komponent [Fuel tank prepressurization when supplying gas through the component]. Oboronnaya tekhnika, 1966, no. 5, pp. 2327.
4. Yoshida F., Akita K. Gas holdup and volumetric mass transfer coefficient in bubble columns. Effects of liquid properties. Ind. Eng. Chem. Process Des. Dev., 1973, vol. 12(1), pp. 7680.
5. Bershadskiy V.A. Modelirovanie usloviy ekspluatatsii kislorodno-vodorodnogo ZhRD na komponentakh topliva s rastvorennym gazom pri ikh stendovoy otrabotke [Simulating operation conditions for oxygen-hydrogen rocket engine using the propellant components with dissolved gas during their stand test] Candidates thesis. Peresvet, NIIKHIMMASH publ., 1984. 192 p.
6. Kafarov V.V. Osnovy massoperedachi [Mass-transfer principles]. Moscow, Vysshaya shkola publ., 1979. 439 p.
7. Ramm V.M. Absorbtsiya gazov [Gas absorption]. Moscow, Khimiya publ., 1976. 655 p.
8. Kutateladze S.S., Styrikovich M.A. Gidrodinamika gazozhidkostnykh system [Hydrodynamics of gas-liquid systems]. Moscow, Energiya publ., 1976. Pp. 72102.
9. Bershadskiy V.A. Ispytaniya s imitatsiey ekspluatatsionnykh usloviy podachi kriogennykh komponentov topliva pri otrabotke raketnykh dvigatel'nykh ustanovok [Tests with simulation of operating conditions for supply of cryogenic propellant components when developing rocket propulsion systems]. Thesis for a doctors degree. Moscow, 2001. 256 p.
10. Bershadskiy V.A. Metodika imitatsii gazosoderzhaniya v zhidkom vodorode pri stendovykh ispytaniyakh dvigateley [Procedure of simulating gas content in liquid hydrogen during the stand tests of engines]. Kosmonavtika, 2012, no. 34, pp. 9299.
11. Bershadskiy V.A., Sokolov B.A., Tumanin E.N., Petrov V.I. Sposoby regulirovaniya teplovogo sostoyaniya kriogennogo topliva v bakakh dvigatel'noy ustanovki pri predstartovykh operatsiyakh [Methods of controlling the cryogenic propellant thermal state in the propulsion system tanks during prelaunch operations]. Izvestiya RAN. Energetika, 2017, no. 4, pp. 95105.

 

GROUND FACILITIES, LAUNCHING EQUIPMENT, OPERATION OF FLYING VEHICLES 05.07.06.

Rulev D.N., Rulev N.D.
Planning observations of astronomical objects from a spacecraft taking into account constraints on the observation times

The paper discusses an approach to solving the problem of planning observations of astronomical objects in a specified catalogue from a spacecraft taking into account constraints on the time intervals for performing observations. It presents a formalization of the problem as the routing problem, which includes statements in the form of a travelling salesman problem and a mixed integer linear programming problem that can be solved by methods of integer programming. It provides examples of constructing optimized programs of observations of astronomical objects from an orbiting spacecraft, illustrating the feasibility of practical use of proposed methods for observation planning, including for carrying out observations from an orbiting spacecraft during flight intervals with varying light and shadow environments in orbit. It demonstrates the effectiveness of the proposed approach both for constructing optimized observation programs, and for analyzing conditions and determining possible observation parameters.

Key words: astronomical objects, light and shadow environment, observation program, route, travelling salesman problem, integer programming.

Reference

1. Belyaev M.Yu. Nauchnye eksperimenty na kosmicheskikh korablyakh i orbital'nykh stantsiyakh [Scientific experiments onboard the spacecraft and orbital stations]. Moscow, Mashinostroenie publ., 1984. 264 p.
2. Rulev D.N. Minimizatsiya zatrat pri vypolnenii posledovatel'nosti pereorientatsiy KA dlya nablyudeniya astrofizicheskikh ob"ektov. V sb. Raschet, proektirovanie, konstruirovanie i ispytaniya kosmicheskikh sistem [Minimization of expenditures when performing a sequence of SC re-orientation for observation of astrophysical objects. In coll.: Calculation, design, development and tests of space systems]. Raketno-kosmicheskaya tekhnika. Trudy. Ser. XII. Korolev, RKK Energiya publ., 1994, issue 23, pp. 128135.
3. Belyaev M.Yu., Legostaev V.P., Rulev D.N. Ekonomiya energeticheskikh zatrat pri planirovanii posledovatel'nosti nablyudeniya s kosmicheskogo apparata astronomicheskikh ob"ektov [Saving power consumption when planning a sequence of observation of astronomic objects from spacecraft]. Izvestiya RAN. Energetika, 2013, no. 1, pp. 1523.
4. Kormen T.Kh., Leizerson Ch.I., Rivest R.L., Stein K. Algoritmy: postroenie i analiz. 3-e izd. [Algorithms: construction and analysis. 3rd ed.]. Moscow, Vil'yams publ., 2013. 1328 p.
5. Moudera Dzh., Elmagrabi S. Issledovanie operatsiy. Metodologicheskie osnovy i matematicheskie metody [Operations research. Methodological foundations and mathematical methods]. Moscow, Mir publ., 1981. 704 p.
6. Murtaf B. Sovremennoe lineynoe programmirovanie [Modern linear programming]. Moscow, Mir publ., 1984. 224 p.

 

Kirilin A.N., Akhmetov R.N., Tkachenko S.I., Stratilatov N.R., Salmin V.V., Voronov K.., AbrashkinV.I., Tkachenko I.S., Piyakov .V., Safronov S.L.
Key design parameters and operational results for a constellation of small spacecraft for scientific and educational purposes of the AIST series

The paper reviews major results of five years of operation of the AiST series small satellites tandem. Two satellites of this series, the flight model and the engineering model, were launched into orbit in 2013. The paper provides performance data for the small spacecraft, describes their purpose, hardware configuration, the constellation status as of second quarter of 2018, research results obtained in the course of experiments conducted onboard each of the two small spacecraft. it evaluates performance capability of the small standardized satellite bus AiST, including thermal control system and power supply system. The results of analysis of telemetry data files accumulated in the course of operation of the AiST series small spacecraft, can be used in the design of new spacecraft for scientific, educational and technology experiment applications that are based on standardized small mass and dimensions satellite buses.

Key words: small spacecraft, standardized small mass and dimensions satellite bus, telemetry data, thermal control system, power supply system, key design parameters, operational results.

Reference

1. Sadovnichiy V.A., Panasyuk M.I., Bobrovnikov S.Yu., Veden'kin N.N. etc. Pervye rezul'taty issledovaniya kosmicheskoy sredy na sputnike UniversitetskiyTat'yana [The first results of a study of the space environment on the Universitet-Tatiana satellite]. Kosmicheskie issledovaniya, 2007, vol. 45, no. 4, pp. 291305.
2. Sadovnichiy V.A, Panasyuk M.I., Yashin I.V. etc. Issledovaniya kosmicheskoy sredy na mikrosputnikakh UniversitetskiyTat'yana i UniversitetskiyTat'yana-2 [Studies of the space environment on microsatellites UniversitetskiyTatyana and UniversitetskyTatyana-2]. Astronomicheskiy vestnik, 2011, vol. 45, no. 1, pp. 531.
3. Kremez G.V., Sakhno I.V., Tkachev E.A., Fateev V.F. Uchebno-issledovatel'skiy malyy kosmicheskiy apparat Mozhaets-4: desyat' let na orbite [Educational and research small space vehicle Mozhaets-4: ten years in orbit ]. Trudy Voenno-kosmicheskoy akademii imeni A.F. Mozhayskogo, 2013, no. 640, pp. 112118.
4. Mayorova V.I., Zelentsov V.V. Kosmicheskiy innovatsionnyy nauchno-obrazovatel'nyy proekt Kosmicheskiy apparat Baumanets: osobennosti realizatsii. Aktual'nye problemy rossiyskoy kosmonavtiki. Tezisy XXX nauchnykh chteniy po kosmonavtike [Space innovative scientific and educational project Spacecraft Baumanets: features of realization. Actual problems of Russian cosmonautics]. Moscow, Commission of the Russian Academy of Sciences on the development of the scientific legacy of pioneers of space exploration publ., 2006. Pp. 306308.
5. Mayorova V.I. Nauchno-obrazovatel'naya kosmicheskaya mikroplatforma Baumanets-2 [Scientific-educational space microplatform Baumanets-2]. Tezisy dokladov Vtoroy mezhdunarodnoy nauchno-prakticheskoy konferentsii. Moscow, MGTU imeni N.E. Baumana publ., 2016. Pp. 5455.
6. Zimin I.I., Valov M.V., Yakovlev A.V., Galochkin S.A. Malyy kosmicheskiy apparat Mikhail Reshetnev. Rezul'taty raboty [Small spacecraft Mikhail Reshetnev. Results of the work]. Elektronnyy zhurnal Trudy MAI, no. 65. Available at: http://www.mai.ru/upload/iblock/03d/03d30644dbfb2345b900cc87ec8ad158.pdf (accessed 20.04.2017).
7. Tkachenko S.I., Salmin V.V., Semkin N.D., Kurenkov V.I., Abrashkin V.I., Prokhorov A.G., Tkachenko I.S., Petrukhina K.V. Proektnyy oblik i osnovnye kharakteristiki malogo kosmicheskogo apparata SGAU GNPRKTS TSSKB-Progress [The design and basic characteristics of a small spacecraft of SSAU TsSKB-Progress]. Vestnik SGAU, 2010, no. 2, pp. 154165.
8. Kirilin A.N., Shakhmatov E.V., Soifer V.A., Akhmetov R.N., Tkachenko S.I., Prokofev A.B., Salmin V.V., Stratilatov N.R., Semkin N.D., Abrashkin V.I., Tkachenko I.S., Safronov S.L., Zheleznov Yu.E. Small satellites AIST constellation design, construction and program of scientific and technological experiments. Procedia Engineering, 2015, vol. 104, pp. 4349. DOI: /10.1016/j.proeng. 2015.04.095.
9. Abrashkin V.I., Voronov K.E., Piyakov A.V., Puzin Yu.Ya., Sazonov V.V., Semkin N.D., Filippov A.S., Chebukov S.Yu. Opredelenie vrashchatel'nogo dvizheniya sputnika AIST po dannym bortovykh izmereniy magnitnogo polya Zemli [Determination of the rotational motion of the satellite AIST according to the onboard measurements of the Earth's magnetic field]. Preprinty IPM im. M.V. Keldysha, 2014, no. 17, 38 p.
10. Abrashkin V.I., Voronov K.E., Piyakov A.V., Puzin Yu.Ya., Sazonov V.V., Semkin N.D., Filippov A.S., Chebukov S.Yu. Opredelenie dvizheniya sputnika Bion M-1 sredstvami apparatury GRAVITON [Determination of the motion of the Bion M-1 satellite by means of GRAVITON equipment]. Preprinty IPM im. M.V. Keldysha, 2014, no. 2, 44 p.
11. Abrashkin V.I., Voronov K.E. Rekonstruktsiya neupravlyaemogo vrashchatel'nogo dvizheniya malogo sputnika AIST. Tezisy dokladov Tret'ey mezhdunarodnoy konferentsii Nauchnye i tekhnologicheskie eksperimenty na avtomaticheskikh kosmicheskikh apparatakh i malykh sputnikakh [Reconstruction of uncontrolled rotational motion of a small satellite AIST. Scientific and technological experiments on automatic spacecraft and small satellites]. Samara, SNTS RAN publ., 2014, pp. 177180.
12. Abrashkin V.I., Voronov K.E., Piyakov A.V., Puzin Yu.Ya., Sazonov V.V., Semkin N.D., Filippov A.S., Chebukov S.Yu. Neupravlyaemoe vrashchatel'noe dvizhenie malogo sputnika Aist [Uncontrollable rotational motion of the small satellite AIST]. Kosmicheskie issledovaniya, 2015, vol. 53, no. 5, pp. 395408.
13. Semkin N.D., Bragin V.V., Piyakov A.V., Telegin A.M., Ryazanov D.M., Matviets M.G. Elektrolizatsiya poverkhnosti nizkoorbital'nogo malogo kosmicheskogo apparata AIST [ ]. Vestnik SGAU, 2015, vol. 14, no. 1, pp. 4657.
14. Novikov L.S., Mileev V.N., Krupnikov K.K., Makletsov A.A. Elektrizatsiya kosmicheskikh apparatov v magnitosfernoy plazme. Model' kosmosa. V 2 t. [Electrification of space vehicles in the magnetospheric plasma. In 2 vol.]. Moscow, KDU publ., 2007. Vol. 2, pp. 236275.

 

CHECKING AND TESTING FLYING VEHICLES AND THEIR SYSTEMS 05.07.07.

Agashkin S.V., Badanina Yu.O., Bashkarev V.S., Drozdov A.A., Ushakov A.R.
Automated system for compensation of the weight component for tests of spacecraft transformable antennas

Modern trends in the development of space industry are focused on rapid market growth in broadband services. Spacecraft with transformable large-sized reflectors created a new round in the competition for the consumer, which is a further step in the globalization of the market of information services, creating benefits to the countries that have the necessary satellite technologies of wide-band multimedia broadcasting. The reliability of any equipment for use in the spacecraft decisively depends on the quality of its ground development test. To assure a high quality of the processing it is required to develop a high-precision automated system for the weight component compensation. The structure of the automation platform has been developed, which corresponds to the accepted technological process of testing. The principles of interaction of subsystems for receiving, processing and controlling the parameters of the test process are defined. The calculation of parametric equations for external and internal loops of the system control has been made.
The developed software is implemented in the hardware and software system for performing tests of large transformable antenna with the weight component compensation system. Using the software extends the capabilities of studying large transformable reflectors and improves the quality and reliability of the tests carried out.

Key words: spacecraft, large reflector, automation, weight component compensation systems, ground development test, software.

Reference

1. Swynerd G., Stark D. Razrabotka sistem kosmicheskikh apparatov: per. s angl. [Development of spacecraft systems: translation from English]. Ed. by Fortescue P.A. Moscow, Al'pina Pablisher publ., 2015. 765 p.
2. Afanas'ev V.G., Verkhoturov V.I., Zaslavskiy V.A., Zelentsov V.A., Islyaev Sh.N., Kopelev V.B., Maslov A.Ya., Mironov A.N., Franchuk O.V. Proektirovanie nadezhnykh sputnikov svyazi [Designing reliable communication satellites]. Ed. by acad. M.F. Reshetnev. Tomsk, MGP RASKO publ., 1993. 221 p.
3. Prowald J., Mangenot C., Klooster K., Scolamiero L. Large reflector antennas: technical and programmatic status one year after the working group conclusions. Proceed. 33rd ESA Antenna Workshop on Challenges for Space Antenna Systems. Noordwijk, The Netherlands, October 1821, 2011. 32 p.
4. Imbriale W., Gao S., Boccia L. Space antenna handbook. John Wiley & Sons Ltd., 2012. 744 p.
5. Harris Corporation. Unfurlable Antenna Solutions / Large reflector. Available at: http://download.harris.com/app/public_download.asp?fid=463 (accessed 05.07.2017).
6. Testoedov N.A. Eksperimental'naya otrabotka kosmicheskikh apparatov na mekhanicheskie vozdeystviya [Development test of spacecraft for mechanical effects]. Krasnoyarsk, Sibirskiy gosudarstvennyy aerokosmicheskiy universitet im. akad. M.F. Reshetneva publ., 2008. 152 p.
7. Aleksandrovskaya L.N., Kruglov V.I., Kuznetsov A.G. Teoreticheskie osnovy ispytaniy i eksperimental'naya otrabotka slozhnykh tekhnicheskikh system [Fundamental theory of tests and development test of complex engineering systems]. Moscow, Logos publ., 2003. 736 p.
8. Poduraev Yu.V. Mekhatronika: osnovy, metody, primenenie [Mechatronics: fundamentals, methods, use]. Moscow, Mashinostroenie publ., 2007. 256 p.
9. Patent RU 1828261 A1 G01M19/00. Ustroystvo obezveshivaniya elementov [Zero-g device for elements]. Anuprienko G.E., Karpachev Yu.A., Kukhotskiy L.M., Moisheev A.A., Pavlyuk V.N., Rudykh Yu.N., Savenko Yu.N.; the applicant Kievskiy politekhnicheskiy institut im. 50-letiya Velikoy Oktyabr'skoy sotsialisticheskoy revolyutsii; application 90 4893917 of 25.12.1990. Byulleten' no. 26, 20.09.1996.
10. Patent 2334970 S2 G61M19/00 V64P7/00. Rossiyskaya Federatsiya. Ustroystvo imitatsii nevesomosti mekhanizmov s gibkoy konstruktsiey elementov [Device for simulating weightlessness of mechanisms with a flexible structure of elements]. Drozdov A.A., Agashkin S.V., Mikhnev M.M., Ushakov A.R.; the patent owner Federal'noe Gosudarstvennoe Unitarnoe predpriyatie Nauchno-proizvodstvennoe ob"edinenie prikladnoy mekhaniki im. akademika M.F. Reshetneva; application 2006126310 of 19.07.2006; published 27.09.2008.
11. Patent 5848899A. United States. Method and device for simulating weightlessness. Howard I.P.; the patent owner Centre for Research in Earth and Space Technology; application 852601 of 15.12.1998.
12. Kovalev I.V., Badanina Yu.O. Platforma avtomatizatsii sistemy kompensatsii vesovoy sostavlyayushchey dlya krupnogabaritnykh reflektorov kosmicheskikh apparatov [Automation platform of the weight component compensation system for large-size spacecraft reflectors]. Vestnik SibGAU, 2016, vol. 17(1), pp. 131136.
13. Romanov A.V., Testoedov N.A. Osnovy proektirovaniya informatsionno-upravlyayushchikh i mekhanicheskikh sistem kosmicheskikh apparatov [Design principles of information-control and mechanical systems of spacecraft]. Ed. by prof. V.D. Atamasov. Saint-Petersburg, ANO LA Professional publ., 2015. 240 p.
14. Gulyaev V.I., Gaydachuk V.V., Chernyavskiy A.G., Shalino L. O dinamike krupnogabaritnogo razvorachivayushchegosya reflektora [About dynamics of a large-size deployable reflector]. Prikladnaya mekhanika, 2003, no. 39(9), pp. 109115.
15. Kovalev I.V., Kikot' Yu.O. Mobil'naya sistema imitatsii nevesomosti dlya krupnogabaritnykh kosmicheskikh apparatov [Mobile system for simulating weightlessness for large-size spacecraft]. Vestnik SibGAU, 2014, issue 4(56), pp. 173178.
16. Debda D.E., Pyatibratov G.Ya. Problemy sozdaniya kombinirovannykh sistem kompensatsii sily tyazhesti ob"ektov obezveshivaniya [Problems when developing the combined systems for gravity compensation of zero-g objects]. Novocherkassk, YuRGTU publ., 2000, no. 396V00, 32 p.

 

FLYING VEHICLES DYNAMICS, TRAJECTORY AND MOTION CONTROL 05.07.09.

Borzykh S.V., Levitskaya Yu.Yu., Shchiblev Yu.N.
An approach to simulating the dynamics of deployment of large solar arrays on spacecraft

This paper discusses the dynamics of solar array deployment, which is one of the key dynamic operations performed by a spacecraft. It provides the rationale for the need to analyze dynamics of solar array deployment as early as during the initial design phases. It provides the actual kinematic diagrams of deployment with indication of structural elements of the deployment system. The paper discusses approaches to mathematical simulation of the solar array deployment process based on analytical mechanics methods taking into account specific features of the system that is to be simulated: design of the solar array and properties of its individual elements, its deployment kinematics, equipment for initiating panel turns, etc.
The paper proposes a methodological approach to simulating deployment of large solar arrays on a spacecraft with universal generation of the computational model, which is convenient for development of efficient numerical algorithms and high-speed software implementations. This approach is based on representing the spacecraft and solar array structures as a spatial structurally-complex system of bodies performing relative motion under the action of specific force factors. For each body a motion equation is written on the basis of general theorems of dynamics. The action of other elements of the solar array on a selected body is taken into account in the form of constraint reaction forces and torques. In order to determine them, special equations are formed, the form and structure of which are driven by the design of joints between individual elements of the solar array. The proposed approach has a vast adaptive potential, which makes it possible to describe various designs and deployment systems. It permits to determine principal integral parameters of the solar array deployment process.

Key words: solar arrays, solar array deployment process dynamics, multi-phase deployment procedures.

Reference

1. Mikrin E.A. Perspektivy razvitiya otechestvennoy pilotiruemoy kosmonavtiki (k 110-letiyu so dnya rogdeniya S.P. Koroleva) [Outlook for our countrys manned spaceflight development (to mark the 110th anniversary of S.P. Korolev]. Kosmicheskaya tehnika i tehnologii, 2017, no. 1(16), pp. 5-11.
2. Bideev A.G., Semin A.Yu., Kuznetsov A.V., Akhmedov M.R. Proyektirovaniye sistemy energosnabzheniya nauchno-energeticheskogo modulya dlya Rossiyskogo segmenta Mezhdunarodnoy kosmicheskoy stantsii [Designing a power supply system of the science and power module for the International Space Station Russian Segment]. Kosmicheskaya tehnika i tehnologii, 2015, no. 2(9), pp. 6474.
3. Khamits I.I., Filippov I.M., Burylov L.S., Tenebaum S., Perfiliev A.V., Gusak D.I. Kontseptsiya kosmicheskoy transportno-energeticheskoy sistemy na osnove solnechnogo mezhorbital'nogo elektroraketnogo buksira [A concept of space transportation and power generating system based on a solar electric propulsion orbital transfer vehicle]. Kosmicheskaya tehnika i tehnologii, 2017, no. 1(16), pp. 3240.
4. Globus Al. Toward an early profitable power sat. Space Manufacturing 14: Critical Technologies for Space Settlement Space Studies Institute, October 29-31, 2010, pp. 110.
5. Gurtov A.S., Petrovichev M.A. Sistema energosnabzheniya bortovogo kompleksa kosmicheskikh apparatov. [The power supply system of the onboard complex of space vehicles]. Samara, SGAU publ., 2007. 87 p.
6. Benson S.W. Solar power for outer planets study. NASA Glenn Research Center, 2007.
7. Garcia M. About the space station solar arrays. NASA. Retrieved 20171206.
8. Zimin V.N. Eksperimentalnoye opredeleniye dinamicheskikh kharakteristik krupnomasshtabnykh transformiruyemykh prostranstvennykh struktur [Experimental determination of the dynamic characteristics of large-scale transformable spatial structures]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie, 2011, no. 1, pp. 4756.
9. Borzykh S.V., Ilyasova I.R. Modelirovaniye i eksperimental'naya otrabotka protsessa raskrytiya krupnogabaritnykh mnogozvennykh solnechnykh batarey kosmicheskikh apparatov [Modeling and experimental development of disclosure process of large-sized multi-element solar batteries of space vehicles]. Inzhenernyy zhurnal: nauka i innovatsii, 2012, no. 8, pp. 60-68.
10. Kovtun V.S., Korolev B.V., Sinyavskiy V.V., Smirnov I.V. Kosmicheskiye sistemy svyazi razrabotki raketno-kosmicheskoy korporatsii imeni S.P. Koroleva [Space communication systems developed by S.P. Korolev Rocket and Space Corporation Energia]. Kosmicheskaya tehnika i tehnologii, 2015, no. 2(9), pp. 324.
11. Krylov A.V., Churilin S.A. Modelirovaniye raskrytiya solnechnykh batarey razlichnykh konfiguratsiy [Modeling of solar batteries various configurations disclosure]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroyeniye, 2011, no. 1, pp. 106-111.
12. Kolesnikov K.S., Kokushkin V.V., Borzykh S.V., Pankova N.V. Raschet i proyektirovaniye sistem razdeleniya stupeney raket [Calculation and design of systems for rocket stages separation]. Moscow, MSTU publ., 2006. 376 p.
13. Bakulin D.V., Borzykh S.V., Ososov N.S., Shchiblev Y.N. Modelirovaniye protsessa raskrytiya solnechnykh batarey [Modeling of the solar battery disclosure process]. Matematicheskoye modelirovaniye, 2004, vol.16, no. 6, pp. 8892.
14. Barde H., Baur C., Chouffot R., De Luca A, Gueurier-Farret M.E., Kleider J.P., Neugnot N., Roy X. Dynamic modelling of multi junction gallium arsenide solar arrays. Proceedings of the 8th European Space Power Conference, Constance, Germany, 1419 September 2008. Available at: http://adsabs.harvard.edu/abs/2008ESASP.661E..11N (accessed 17.04.2018).
15. Ilyasova I.R. Dinamika protsessa raskrytiya mnogozvennykh solnechnykh batarey [The disclosure process dynamics of multi-element solar batteries]. Vestnik SGAU, 2012, vol. 35, no. 4, pp. 88?93.
16. Yudintsev V.V. Modelirovaniye protsessov raskrytiya mnogoelementnykh konstruktsiy kosmicheskikh apparatov [Modeling of disclosure processes of multi-element constructions of space vehicles]. Polet, 2012, no. 5, pp. 2833.
17. Panichkin V.I. Matematicheskoye modelirovaniye dinamiki deformirovaniya mnogostvorchatoy solnechnoy batarei v protsesse raskrytiya [Mathematical modeling of the deformation dynamics of a multi-leaf solar battery during disclosure process]. Izvestiya AN SSSR. MTT, 1992, no. 4, pp. 183-190.
18. Aslanov V., Kruglov G., Yudintsev V. NewtonEuler equations of multibody systems with changing structures for space applications. Acta Astronautica, 2011, vol. 68, no. 11-12, pp. 20802087. DOI:10.1016/j.actaastro. 2010.11.013.
19. Mengali G., Salvetti A., Specht B. Multibody analysis of solar array deployment using flexible bodies. Universita di Pisa, Facoltà di Ingegneria Corso di Laurea in Ingegneria Aerospaziale, 2007. Available at: http://www.lucabagnoli.com/University_career/Thesis_main.pdf (accessed 17.04.2018).
20. Narayana L., Nagaraj .., Nataraju .S. Deployment dynamics of solar array with body rates. North American ADAMS User Conference, Orlando, USA, 2000. Available at: http://web.mscsoftware.com/support/library/conf/adams/na/2000/49_ISRO_solar_array_deploy.pdf (accessed 17.04.2018).
21. Bushuyev A. Yu., Farafonov B. A. Matematicheskoye modelirovaniye protsessa raskrytiya solnechnoy batarei bol'shoy ploshchadi [Mathematical modeling of disclosure process of a large solar battery]. Matematicheskoye modelirovaniye i chislennyye metody, 2014, vol. 2, no. 2, pp. 101-114.
22. Bakulin V.N., Borzykh S.V., Shchiblev Yu.N., Ilyasova I.R. Sistema uravneniy minimalnoy razmernosti dlya opisaniya protsessa raskrytiya solnechnykh batarey [A equations system of minimum dimension for describing disclosure process of solar batteries]. Krayevye zadachi i matematicheskoye modelirovaniye. Trudy 10-y Vserossiyskoy konferentsii. Novokuznetsk, NFI KemGU publ., 2010. Vol. 2, pp. 138-142.
23. Yakovlev A.S. Avtomatizirovannoye formirovaniye uravneniy kinematiki raskrytiya krylyev solnechnykh batarey kosmicheskogo apparata [The automated formation of kinematics equations for the wings disclosure of the solar batteries of the space vehicles]. In: Inzheneriya dlya osvoyeniya kosmosa. Tomsk, NFI TPU publ., 2016. Pp. 85-89.

 

DISCUSSION

Sizentsev G.A., Sinyavskiy V.V., Sokolov B.A.
A concept of an energy-and-climate control facility in space to counter global overheating

Main results of the fifth Evaluation Report of the Climate Change Intergovernmental Experts Team became the foundation for the climate agreement of the UN Paris conference on climate (December 2015), by identifying the ways of countering a global environmental disaster on Earth. The conference reaffirmed the need to limit release of green house gases into the Earth atmosphere. However, meeting the goals set in the Evaluation Report is in doubt because of the existing political and economic differences among nations, which is evidenced by the level of commitments to limit emissions made by the heads of the countries that took part in the conference.
This paper proposes to consider using untapped potential of spaceflight towards solving the global warming problem by contributing the UN Adaptation Fund through sale of rare materials mined on the Moon and setting up a reserve space energy-and-climate control facility. This would allow, on the one hand, to increase financial aid to developing countries to help them combat climate change consequences and lend support to the lunar industrial infrastructure, as well as to the development of a space system for thermal control, on the other hand, to stabilize as far as possible the geographic coordinates of climatic zones, the level of the ocean, etc., reducing losses to wildlife, and, among other things, to the Civilization.

Key words: global climate, renewable energy sources, lunar rare-earth materials, space technology, lunar industrial infrastructure.

Reference

1. Koroteev A.S., Semenov Yu.P., Semenov V.F., Sizentsev G.A., Sinyavskiy V.V., Sokolov B.A., Sotnikov B.I. Kosmicheskaya tekhnika i kosmonavtika v reshenii ekologicheskikh problem mirovoy energetiki XXI veka [Space technology and cosmonautics in solving ecological problems of world power engineering of the XXI century]. Izvestiya RAN. Energetika, 2006, no. 1, pp. 142155.
2. Turn down the heat: why a 4C warmer world must be avoided. Available at: download (accessed 28.07.2015).
3. Budyko M.I. Klimat v proshlom i budushchem [Climate in the past and in the future]. Leningrad, Gidrometeoizdat publ., 1980. 352 p.
4. Kokorin A.O. Izmenenie klimata: obzor Pyatogo otsenochnogo doklada [Climate change: review of the Fifth assessment report]. Moscow, Vsemirnyy fond dikoy prirody publ., 2014. 80 p. Available at: http://www.wwf.ru/resources/publ/book/916 (accessed 28.07.2015).
5. Izmenenie klimata, 2013 g. Fizicheskaya nauchnaya osnova. Rezyume dlya politikov. Vklad rabochey gruppy 1 v pyatyy doklad ob otsenke mezhpravitel'stvennoy gruppy ekspertov po izmeneniyu klimata [Climate change, 2013. Physical scientific basis. Summary for politicians. Contribution of working group 1 to the fifth assessment report of Inter-governmental Panel of Climate Change]. Available at: https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_SPM_brochure_ru.pdf (accessed 28.07.2015).
6. Press-reliz MGEIK 31 marta 2014 g. Doklad MGEIK: Izmenyayushchiysya klimat porozhdaet shiroko rasprostranennye riski, odnako sushchestvuyut vozmozhnosti dlya effektivnykh otvetnykh mer [IPCC Press release of March 31, 2014. IPCC Report: a changing climate results in wide-spread risks, however there are capabilities for effective retaliatory measures]. Available at: download (accessed 28.07.2015).
7. Obshchiy informatsionnyy paket. 5-y otsenochnyy otchet MGEIK, RG-3 [General information packet. The fifth assessment report of Inter-governmental Panel on Climate Change (IPCC), WG-3]. Available at: http://infoclimate.org/wp-content/uploads/2014/04/rabochaya-grupa-3.pdf (accessed 28.07.2015).
8. Delukki M., Dzheykobson M. Put' k nadezhnoy energetike v 2030 godu [The way to reliable power engineering in 2030]. V mire nauki, 2010, no. 01, pp. 4451.
9. Kokorin A.O. Parizhskaya konferentsiya po klimatu: uspekh ili proval [The Paris Climate Conference: success or failure]. Nezavisimaya gazeta, 12.01.2016. Available at: http://www.ng.ru/ng_energiya/2016-01-12/9_climat.html (accessed 28.11.2018).
10. Klimat dlya chaynikov: zadachi i trudnosti parizhskoy konferentsii OON SOR 21 [Climate for dummies: tasks and problems of Paris Conference the UN SOR 21]. Available at: ru.rfi.fr/frantsiya/20151130-sor21-zadachi-i-trudnosti-parizhskoi-konferentsii-oon-po-klimatu (accessed 21.08.2018).
11. TASS 25.11.2017 g. Adaptatsionnyy fond stanet finansovym instrumentom Parizhskogo klimaticheskogo soglasheniya [TASS 25.11.2017 . The Adaptation Fund will be a financial tool for the Paris Climate Agreement]. Available at: http://tass.ru/plus-one/4753805 (accessed 28.11.2018).
12. Luna shag k tekhnologiyam osvoeniya Solnechnoy sistemy [The Moon a step to technologies of the Solar system exploration]. Sci. ed. by V.P. Legostaev i V.A. Lopota. Moscow, RKK Energiya publ., 2011. 584 p.
13. Shevchenko V.V. Utilizatsiya privnesennogo na Lunu asteroidnogo veshchestva kak bolee ekonomichnyy put' k polucheniyu kosmicheskikh resursov vysokoy tsennosti [Utilization of the asteroid subject on the Moon a more economic way to obtain cosmic resources of high value]. Kosmicheskaya tekhnika i tekhnologii, 2018, no. 1(20), pp. 522.
14. Sizentsev G.A. Kosmicheskiy kompleks dlya resheniya energoklimaticheskikh problem na Zemle [A space system to address energy and climate problems on Earth]. Kosmicheskaya tekhnika i tekhnologii, 2013, no. 3, pp. 8295.
15. Belyaev L.S., Lagerev A.V., Posekalin V.V. etc. Energetika XXI veka: Usloviya razvitiya, tekhnologii, prognozy [Power engineering of the XXI century: Development conditions, technologies forecasts]. Editor-in-chief N.I. Voropay. Novosibirsk, Nauka publ., 2004. 386 p.
16. Sizentsev G.A., Sotnikov B.I. Kontseptsiya kosmicheskoy sistemy regulirovaniya termicheskogo rezhima zemnoy atmosfery [Concept of the space control system of the earth atmosphere thermal mode]. Izvestiya RAN. Energetika, 2009, no. 2, pp. 91100.
17. Zelenyy L.M. Kosmicheskie issledovaniya neobkhodimy dlya zhizni na Zemle [Space research is necessary for life on the Earth]. Ekologiya i zhizn', 2011, no. 9(118), pp. 4855.